Theorem 1. Let B C M (C) be a semi-simple algebra. If B has property P,

then dimB < k. Furthermore, if dimB =k, then B is a mazimal P, algebra.

Our primary goal is to prove this theorem. A maximal P; algebra is an
algebra B with property P; such that any algebra A, B C A, A does not have
property P;. To prove this theorem, we will need a few lemmas first to assist

us.

Lemma 1. Let B C My (C) be a semi-simple algebra. If B has property P,
then dimB < k.

Proof. We will use induction on k. The case k = 1 is clear. Suppose this is true
for kK < n and let B C M,4+1(C) be a semi-simple algebra. We need to show
dimB < n + 1. Suppose B has a non-trivial central projection, p,0 < p < 1.
Then, B = pBp & (1 — p)B(1 — p). From this, we can see pBp C B(pH) and
(1-p)B(1—p) C B((1 —p)H are both semi-simple algebras with property P,
as proven earlier. By the assumption of induction dimpBp < dim(pH) and
dim(1 — p)B(1 — p) < dim(1 — p)H. Therefore, dimB = dim(pBp) + dim((1 —
p)B(1 —p)) < dimpH + dim(1 —p)H = dimH =n + 1.
Now, let’s assume B does not have a nontrivial central projection. Then,
B = M,(C) C M,41(C). Since B has P;, > <n+1,s0r <n+ 1.
O

Lemma 2. Let B C My(C). If B = My(C), then B is a mazimal Py, algebra.

Lemma 3. Suppose 0 # a € M,(C). Then, for any a € A, there exists finite

elements by, bs....b, c1, Ca, ...ck, such that Zle b;ac; = 1,,.

Proof. Note that M, (C)aM,(C) is a two sided ideal of M,,(C) and M,,(C)a M, (C) #
0. So, M, (€C)aM,(C) = M,(C), this implies the lemma. O

The following well known lemma will be very helpful.



Lemma 4. There are finitely many unitary matrices, uy, us, ....up € M,(C),

such that %Zle uau; = TTTW)I” for all a € M, (C).
Lemma 5. Let b C M,2(C). If B = M,(C), then B is a mazimal Py algebral.

We may write M,,2(C) = M, (C)® M, (C) and assume B = M,,(C)&I,,. Since
B has a separating vector, B has property P;.

Now, assume B C R C M,2(C) and R is a P, algebra. We can write
R = Ry + J, such that B C Ry, where R; is the semi-simple part and J is the
radical of R. Since R has P;, R, has P;, and by Lemma 1, dimR; < n?. Since
dimB = n?, we have R, = B.

Suppose 0 # & = (zi;)1<ij<n € J with respect to the matrix units I,, ®

M, (C). Note that with respect to the matrix units of I,, ® M,,(C), each element

a. .0
Oa .. 0

of B = M,(0) ® I,, has the following form | - ),a € M, (C). Without
00..a

loss of generality, let’s assume 11 # 0.
By Lemma 3, there exists a finite elemtns by, ...bg, c1,...c;, € M,(C), such

that

Z?:l bimllci = In .
(1)

Let y = (Yij)1<ijon = Sor_y (b ® 1) X (¢; @ 1,,) € J. By (1), we have y1; = I,,.
Next, we can choose unitary matrices u1,...ux as in Lemma 4. Let z = (z;;) =
Zle(ui ® L)Y (u; ® I,) € J. Then, z11 = I, and z; = X\;;I, for some
Xij € C1<14,5<n.So, Zel,®M,C).

Since z € J, 2™ = 0, as elements in the radical are nilpotent. By the Jordan
Canonical theorem, there exists an invertible matrix w € I,, ® M,,(C) such that
0 # wzw™t = @F_ 2 € I, ® M, (C) and each z; is a Jordan block with diagonal

0. By replacing R with wRw™!, we may assume 0 # z = ®%_, z; € I,, ® M,,(0).



Suppose r = maz{rankz; : 1 < i,< k}. We may assume rankz; = ... =

rankzs = r and rank z; < r for all s < i < k. Then 2"~ ! = (®5_12""1) ® 0.

0..01
0..00

Note that 2”71 = | - . We may assume R is the algebra generated by
0..00

M,(C)® I, and I, ® 2" L.

Without loss of generality, we assume 7 = 2, and hence s = 7. The

(ab),a,b € M,(C). Then,

general case can be proved similarly. Let ¢

t 0 .0
0t 0..0
R= : . Let t;; = ("% 4, ). Then, simple computations show
00... t
ty
ta
that R, = " Let m = (1?.& 8)). Since this has P;, we should
“tn
m
m
be able to write . plus an element of the preannihilator as a rank-1

matrix. However, if this is glo, then we know 1+1y1,1+%s...1 4y are all rank-1.
However, summing all of these gives I, +y1 + I, + y2 + ....I, +ys = s* I, which

is rank at most s = % < n. This is a contradiction.

Lemma 6. Suppose A # 0 € C andyi,ys,....,y2 € M,(C) such that y; +

Y2 + ... + y, = 0. Suppose m1,n2,....0, € C* are linearly dependent. Let

A * . .. *
m In+wun * .. *
N2 * L,+ys * .. *
t= . . This matrixz has rank s 1.
Mn * x kI, +yn

Proof. Note first that each n; block is an n x 1 column vector. Since we are
saying they are linearly dependent, then we know that there are k vectors in the
set {n;}¥_, that are independent. Without loss of generality, assume that the

first k vectors are the linearly independent ones. Then, for any j > k, ; can be



written as a linear combination of the first k£ elements. Another way of viewing
this is saying that if we look at the matrix [n;n3...n,], for any j > k, the j-th
row can be written as a linear combination of the first & rows. So, in our matrix
t, let’s assume it has rank one. On each 7;’s j-th row, we can row reduce them
to zero. To maintain rank-1, since we have the nonzero-entry in the top left, we
have to have the entire row containing a j-th entry has to be zero. Doing this
row reduction changes our y; to a y; such that I,, + y; has zero entries along it’s
row that it shares with the j-th entries of each n;. However, we still maintain
the condition that Z?Zl y; = 0. These rows that contain these j row entries
occur in the k % 7 + 1 row where 1 < k < n. So, since we know all these rows
have to be zero, we know something about the 1+ y;’s 2% 7 + 1 entry. We know
it has to be zero now. So, we can sum up each of those new 0 entries from each
1+ y; Doing this sum only over the position that it shares with the j-th row
of each 7; gives 0 = 37 1 +y; =S 1+3 "y, = >, 1 =n. However,

that gives us n = 0, which is impossible, hence contradicting our claim that this

is rank-1.
O
A 00
Lemma 7. Let B =C M5(C) = B(H) such thatdimH =5 and B = 0 a 0],xeCae MO
0 0 a

Then, B is a maximal Py algebra.

Proof. Since B has a separating vector, B has property P;. Suppose B C R C

M5(C) and R is a Pyalgebra. We can write R = R; + J, such that B C Ry,

where R; is the semi-simple part and J is the radical part. By Lemma 1,
00 0

B =Ry Let 0# X € J and let p = (688) and q = (01202). Then
000 002 I2

qBq C qRq C B(PH) = M4(C). By Lemma 3, ¢Bq = qRq. This implies we



0 ¢ gt
may assume 0 #x = |0 0y 0y |, where &,n € (i
0 02 09
Case 1: & and 7 are linearly independent. Then, x (§ ‘g §) € R. Since &

and 7 are linearly independent, and a € Ms(C) is arbitrary, this implies that

Agh T
R= 0 a 0 |XxeCe¢&neac M5(C) 3. Simple computations show
0 0 a
0 *= =
that Ry, = 0 31 * | Y192 € Ma(C),y1 +y2 =0 p Since we assume R
0 * yo

has property P;, Is + R, is rank-1 for some matrix in R;. This gives us a
1 * *
matrix of the form R, = (8 y1+1z _"«_I ) However, this contradicts Lemma 7.
* Y2ri2
Case 2: £ and 7 are linearly dependent. Without loss of generality, assume

0 €T te” T 4T
n =t sox = (0%2 gz>andx(§§8>:<8§a t% ) Since £ # 0, and a €
a

0 02 02 00 a
T T
M5 (C) is arbitrary, this implies that R = {(é éa t% ) NeCeée@ac Mg(@)}
00 a

Simple computations show that

000
R, = {(Z; y*ly*)ylayQ € Ma(C),y1 +y2 = 0,m1,7m2 GCZ,TthT]Q:O}

(2)

If this space has P;, then I5 + R, should be rank-1 for some element of

1 * *
R, . However, this gives us matrices of the form R, = (m yi+12 -T—I ) , which
T2 * Y2112

contradicts lemma 7. O

Lemma 8. Suppose zij C My, (C) and {cji} C M,5(C) such that 377_) 377, zijacyib =



0 ,Ya e M, (C),be M(C). If ¢j; #0 for some 1 < i <s,1<j<r, then z;

are linearly dependent.

Proof. We may assume c11 # 0 and the (1, 1) entry of ¢;11 is not zero. Replace c¢j;

10..0 10..0 10..0
00..0 00 ..0 00 ..0

by : Cji : , WE Inay assume Cj; = )\ij . aAll =1.
0.. 0 0.. 0 0

1000

000
Let xfj be the k-th column of z;;.Note that z;; <: ) = x%j . Then,
0... 0

10..0
00 ...0

S r . . S I
Zi:l Zj:l ZijCji = 0 1mphes Zi:l Zj:l )\ijzij ( :
s . . 0.. 0
> izt Zj:l Aijxi; =0
10..0 00..0
o 00 .0 10..0 . ; )
Similarly, we can use | . cji = Nij | - show Y7 ijl AijTy; =

0.. © 0.. 0
0. Proceeding similarly, we obtain >.._, Z;zl /\ijxfj =0forall <k<r.

) = 0 which implies

Therefore, 7, 25:1 Aijzj; = 0 which shows the z;; are linearly dependent.
O

Lemma 9. Let B C M,2, . (C) = B(H) such that dimH = (r? + )% and
B={a" @b :ae M. (C),be M,(C)}. Then, B is a maximal P, algebra.

Proof. Since B has a separating vector, B has property P;. Suppose B C R C
M,z ,2(C) such that R has P;. Write R = R; + J such that B C Ry, where Ry
is the semi-simple part and J is the radical part. . By Lemma 1, B = R;. Let
0# X e€Jandlet p= 17 @0 and q=p=Is(s)®0. Then, pBp C pRp C B(pH)
and pRp has property P;. By Lemma 5, pRp = pBp. Similarly, ¢Rq = ¢Bgq.

(r)
This implies we may assume 0 # x = (0’(‘) 02)) ,C #0. If Z € R) such that



T * * * *
* T2 * *
* * * x,
7 =

Z11 212 213 ... Z1r Y1 * . *

Z21 Z22 %23 ...ZR9r * Y2 * R S

Zs1 Rs2 Rs3  ---Rsr * e KYs

Then 1 +x2+...+x, = 0, and y; +y2 +...ys = 05. Note that x(a(r) @) =
0 ()

0 o ) Write ¢ = (cij)i<i<ri<j<s- Therefore, we have
y Z11 ... 21T Cc11 ... C1s b
Tr : : - =0
2;1 ceo Zsp 0;1 ce Crs ' b
Simple computation shows that T <Zf=1 > zijcjib) = 0. Since b €

M,(0) is arbitrary (Zle Z§:1 Zijcji) =0
Note that

(r)
) a(r)cb(s)) r o (acib)i<i<ri<j<s

(r) (s)) — (O <r1<5<
(@ & 0)a(0® b)) = (% ) o

(3)

So, we have 7, > 7 zjjac;b = 0, Va € M,(C),b € M,(C). By Lemma 8,
this implies that z;; are linearly dependent.

rankl matrices. So there are &1...{s € €, m1...m, € € such that z,; = & @ n;.
Since {z;; } are linearly dependent, either {{;} are linearly dependent or {n,} are

linearly dependent. Without loss of generality, assume {&;} are linearly depen-



I, +xq

dent. Now, I,2 ;242 is a matrix of the form E@m ... & @n I+

EsR@m ... Es®M, *

Since x1 + ... + x,, = 0, one entry of I,. + x; is not zero for some 1 <7 < r.
o
o

We may assume the (1,1) entry of I, + 2y is not zero. Let 7y = [ . |. Then
a‘r
the matrix
Ir + 21
atlr ... L+
Cklgs * oL Is+ys

By lemma 6, this matrix has rank > 2. This contradicts our assumption. [
We are now ready to prove Theorem 1.

Proof. By Lemma 1, if B has Pj, then dimB < k. Assume B has property Py,
and dimB = k. We claim B = &;_; M/ | (C),k = iy n?. We will proceed by
induction on k. If k£ = 1, this is clear. Assume our claim is true for k¥ < n. Let
B C M,,+1(C) be a semi-simple P; algebra and dim(B) = n + 1Suppose B has
non trivial central projection p,0 < p < 1. Then, B = pBp ® (1 — p)B(1 — p).
From this we can say pBp C B(pH) and (1 —p)B(1 —p) C B((1 — p)H) are
both semi-simple with property P;. By Lemma 1 dim(pBp) = dim(pH) and
dim((1 —p)B(1 —p)) = dim((1 — p)H). By induction, pBp = ®j_, M} (C) and
(1= p)B(1 - p) = GMZ: ().

Suppose B does not have a nontrivial central projection. Then B = M,.(C) C
M, 1(C) and dimB =72 =n+1, so B = M, (C)").

Suppose B € R C My(€) € B(H) such that R has property P;. Let

Is +ys




B = R;. Let p; be the projection of B that corresponds to the Mﬁ:” Let
0 # « € J. Then, we have p;Bp; C p;Rp; C B(p;H) and p;Rp; has prop-

erty P;. By Lemma 5 p; Rp; = p; Bp;, this implies we may assume 0 # x =

05;?1) * 12 ... Tip,
0 o
0o ... o{me)

We now assume z13 # 0. Then (p; + p2)z(p1 + p2) S (p1 + p2)R(p1 + p2).
But, by our previous lemma, after cutting down by two projections, we have the
direct sum of two semi-simple algebras is already maximal P;, which contradicts

that R will be maximal P;.



