Theorem 1. Let $B \subset M_k(\mathbb{C})$ be a semi-simple algebra. If B has property P_1 , then dim $B \leq k$. Furthermore, if dimB = k, then B is a maximal P_1 algebra.

Our primary goal is to prove this theorem. A maximal P_1 algebra is an algebra B with property P_1 such that any algebra $A, B \subsetneq A, A$ does not have property P_1 . To prove this theorem, we will need a few lemmas first to assist us.

Lemma 1. Let $B \subset M_k(\mathbb{C})$ be a semi-simple algebra. If B has property P_1 , then $\dim B \leq k$.

Proof. We will use induction on k. The case k = 1 is clear. Suppose this is true for $k \leq n$ and let $B \subset M_{n+1}(\mathbb{C})$ be a semi-simple algebra. We need to show $dimB \leq n+1$. Suppose B has a non-trivial central projection, p, 0 . $Then, <math>B = pBp \oplus (1-p)B(1-p)$. From this, we can see $pBp \subset B(pH)$ and $(1-p)B(1-p) \subset B((1-p)H$ are both semi-simple algebras with property P_1 , as proven earlier. By the assumption of induction $dimpBp \leq dim(pH)$ and $dim(1-p)B(1-p) \leq dim(1-p)H$. Therefore, $dimB = dim(pBp) + dim((1-p)B(1-p)) \leq dimpH + dim(1-p)H = dimH = n + 1$.

Now, let's assume B does not have a nontrivial central projection. Then, $B = M_r(\mathbb{C}) \subset M_{n+1}(\mathbb{C})$. Since B has P_1 , $r^2 \leq n+1$, so $r \leq n+1$.

Lemma 2. Let $B \subset M_4(\mathbb{C})$. If $B = M_2(C)$, then B is a maximal P_1 algebra.

Lemma 3. Suppose $0 \neq a \in M_n(\mathbb{C})$. Then, for any $a \in A$, there exists finite elements $b_1, b_2, \dots, b_k, c_1, c_2, \dots, c_k$, such that $\sum_{i=1}^k b_i a c_i = I_n$.

Proof. Note that $M_n(\mathbb{C})aM_n(\mathbb{C})$ is a two sided ideal of $M_n(\mathbb{C})$ and $M_n(\mathbb{C})aM_n(\mathbb{C}) \neq 0$. So, $M_n(\mathbb{C})aM_n(\mathbb{C}) = M_n(\mathbb{C})$, this implies the lemma. \Box

The following well known lemma will be very helpful.

Lemma 4. There are finitely many unitary matrices, $u_1, u_2, ..., u_k \in M_n(\mathbb{C})$, such that $\frac{1}{k} \sum_{i=1}^k u_i a u_i^* = \frac{Tr(a)}{n} I_n$ for all $a \in M_n(\mathbb{C})$.

Lemma 5. Let $b \subset M_{n^2}(\mathbb{C})$. If $B = M_n(\mathbb{C})$, then B is a maximal P_1 algebral.

We may write $M_{n^2}(\mathbb{C}) = M_n(\mathbb{C}) \otimes M_n(\mathbb{C})$ and assume $B = M_n(\mathbb{C}) \otimes I_n$. Since *B* has a separating vector, *B* has property P_1 .

Now, assume $B \subsetneq R \subseteq M_{n^2}(\mathbb{C})$ and R is a P_1 algebra. We can write $R = R_1 + J$, such that $B \subseteq R_1$, where R_1 is the semi-simple part and J is the radical of R. Since R has P_1 , R_1 has P_1 , and by Lemma 1, $dimR_1 \le n^2$. Since $dimB = n^2$, we have $R_1 = B$.

Suppose $0 \neq x = (x_{ij})_{1 \leq i,j \leq n} \in J$ with respect to the matrix units $I_n \otimes M_n(\mathbb{C})$. Note that with respect to the matrix units of $I_n \otimes M_n(\mathbb{C})$, each element of $B = M_n(\mathbb{C}) \otimes I_n$ has the following form $\begin{pmatrix} a & . & . & 0 \\ 0 & a & . & 0 \\ . & \\ 0 & 0 & ... & a \end{pmatrix}$, $a \in M_n(\mathbb{C})$. Without loss of generality, let's assume $x_{11} \neq 0$.

By Lemma 3, there exists a finite elements $b_1, ... b_k, c_1, ... c_k \in M_n(\mathbb{C})$, such that

$$\sum_{i=1}^{k} b_i x_{11} c_i = I_n \ . \tag{1}$$

Let $y = (y_{ij})_{1 \le i,j \le n} = \sum_{i=1}^{k} (b_i \otimes I_n) X(c_i \otimes I_n) \in J$. By (1), we have $y_{11} = I_n$. Next, we can choose unitary matrices $u_1, \dots u_k$ as in Lemma 4. Let $z = (z_{ij}) = \sum_{i=1}^{k} (u_i \otimes I_n) Y(u_i^* \otimes I_n) \in J$. Then, $z_{11} = I_n$ and $z_{ij} = \lambda_{ij} I_n$ for some $\lambda_{ij} \in \mathbb{C}, 1 \le i, j \le n$. So, $Z \in I_n \otimes M_n(\mathbb{C})$.

Since $z \in J$, $z^n = 0$, as elements in the radical are nilpotent. By the Jordan Canonical theorem, there exists an invertible matrix $w \in I_n \otimes M_n(\mathbb{C})$ such that $0 \neq wzw^{-1} = \bigoplus_{i=1}^k z_i \in I_n \otimes M_n(\mathbb{C})$ and each z_i is a Jordan block with diagonal 0. By replacing R with wRw^{-1} , we may assume $0 \neq z = \bigoplus_{i=1}^k z_i \in I_n \otimes M_n(\mathbb{C})$. Suppose $r = max\{rankz_i : 1 \le i, \le k\}$. We may assume $rankz_1 = ... = rankz_s = r$ and rank $z_i < r$ for all $s < i \le k$. Then $z^{r-1} = (\bigoplus_{i=1}^{s} z^{r-1}) \oplus 0$. Note that $z^{r-1} = \begin{pmatrix} 0 & ... & 0 & 1 \\ 0 & ... & 0 & 0 \\ \vdots & & \\ 0 & ... & 0 & 0 \end{pmatrix}$. We may assume R is the algebra generated by $M_n(\mathbb{C}) \otimes I_n$ and $I_n \otimes z^{r-1}$.

Without loss of generality, we assume r = 2, and hence $s = \frac{n}{2}$. The general case can be proved similarly. Let $t = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, a, b \in M_n(\mathbb{C})$. Then, $R = \left\{ \begin{pmatrix} t & 0 & \dots & 0 \\ 0 & t & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & t \end{pmatrix} \right\}$. Let $t_{i\perp} = \begin{pmatrix} x_{2i-1} & * \\ y_i & x_{2i} \end{pmatrix}$. Then, simple computations show that $R_{\perp} = \left\{ \begin{pmatrix} t_1 & t_2 & \\ & & \\ & & & t_{\frac{n}{2}} \end{pmatrix} \right\}$. Let $m = \begin{pmatrix} 0 & 0 \\ I_n & 0 \end{pmatrix}$. Since this has P_1 , we should be able to write $\begin{pmatrix} m & m \\ & & \\ & & \\ & & & \end{pmatrix}$ plus an element of the preannihilator as a rank-1

matrix. However, if this is so, then we know $1 + y_1, 1 + y_2...1 + y_s$ are all rank-1. However, summing all of these gives $I_n + y_1 + I_n + y_2 +I_n + y_s = s * I_n$ which is rank at most $s = \frac{n}{2} < n$. This is a contradiction.

Lemma 6. Suppose $\lambda \neq 0 \in \mathbb{C}$ and $y_1, y_2, ..., y_2 \in M_n(\mathbb{C})$ such that $y_1 + y_2 + ... + y_n = 0$. Suppose $\eta_1, \eta_2, ..., \eta_n \in \mathbb{C}^n$ are linearly dependent. Let $\begin{pmatrix} \lambda & * & \ddots & \ddots & * \\ \eta_1 & I_n + y_1 & * & \ddots & * \\ \eta_2 & * & I_n + y_2 & * & ... & * \\ \vdots & & & & & \\ \ddots & & & & & \\ \eta_n & * & ... & * & * & I_n + y_n \end{pmatrix}$. This matrix has rank \not{s} 1.

Proof. Note first that each η_i block is an $n \times 1$ column vector. Since we are saying they are linearly dependent, then we know that there are k vectors in the set $\{\eta_i\}_{i=1}^k$ that are independent. Without loss of generality, assume that the first k vectors are the linearly independent ones. Then, for any j > k, η_j can be

written as a linear combination of the first k elements. Another way of viewing this is saying that if we look at the matrix $[\eta_1\eta_2...\eta_n]$, for any j > k, the *j*-th row can be written as a linear combination of the first k rows. So, in our matrix t, let's assume it has rank one. On each η_i 's j-th row, we can row reduce them to zero. To maintain rank-1, since we have the nonzero-entry in the top left, we have to have the entire row containing a j-th entry has to be zero. Doing this row reduction changes our y_i to a y'_i such that $I_n + y'_i$ has zero entries along it's row that it shares with the *j*-th entries of each η_i . However, we still maintain the condition that $\sum_{i=1}^{n} y_i^{'} = 0$. These rows that contain these j row entries occur in the k * j + 1 row where $1 \le k \le n$. So, since we know all these rows have to be zero, we know something about the $1 + y_i$'s i * j + 1 entry. We know it has to be zero now. So, we can sum up each of those new 0 entries from each $1 + y'_i$. Doing this sum only over the position that it shares with the *j*-th row of each η_i gives $0 = \sum_{i=1}^n 1 + y'_i = \sum_{i=1}^n 1 + \sum_{i=1}^n y'_i = \sum_{i=1}^n 1 = n$. However, that gives us n = 0, which is impossible, hence contradicting our claim that this is rank-1.

Lemma 7. Let
$$B = \subset M_5(\mathbb{C}) = B(H)$$
 such that $\dim H = 5$ and $B = \left\{ \begin{pmatrix} \lambda & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}, \lambda \in \mathbb{C}, a \in M_2(\mathbb{C}) \right\}$

Then, B is a maximal P_1 algebra.

Proof. Since *B* has a separating vector, *B* has property P_1 . Suppose $B \subset R \subseteq M_5(\mathbb{C})$ and *R* is a $P_1algebra$. We can write $R = R_1 + J$, such that $B \subseteq R_1$, where R_1 is the semi-simple part and *J* is the radical part. By Lemma 1, $B = R_1$. Let $0 \neq X \in J$ and let $p = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & I_2 & 0_2 \\ 0 & 0_2 & I_2 \end{pmatrix}$. Then $qBq \subseteq qRq \subset B(PH) = M_4(\mathbb{C})$. By Lemma 3, qBq = qRq. This implies we

may assume $0 \neq x = \begin{pmatrix} 0 & \xi^T & \eta^T \\ 0 & 0_2 & 0_2 \\ 0 & 0_2 & 0_2 \end{pmatrix}$, where $\xi, \eta \in \mathbb{C}^2$.

Case 1: ξ and η are linearly independent. Then, $x \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in R$. Since ξ and η are linearly independent, and $a \in M_2(\mathbb{C})$ is arbitrary, this implies that $R = \left\{ \begin{pmatrix} \lambda & \xi^T & \eta^T \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \lambda \in \mathbb{C}, \xi, \eta \in \mathbb{C}^2, a \in M_2(\mathbb{C}) \right\}$. Simple computations show that $R_{\perp} = \left\{ \begin{pmatrix} 0 & * & * \\ 0 & y_1 & * \\ 0 & * & y_2 \end{pmatrix} y_1, y_2 \in M_2(\mathbb{C}), y_1 + y_2 = 0 \right\}$ Since we assume Rhas property P_1 . $L_r + R_{\perp}$ is rank-1 for some matrix in R_{\perp} . This gives us a

Case 2: ξ and η are linearly dependent. Without loss of generality, assume $\eta = t\xi$, so $x = \begin{pmatrix} 0 & \xi^T & t\xi^T \\ 0 & 0_2 & 0_2 \\ 0 & 0_2 & 0_2 \end{pmatrix}$ and $x \begin{pmatrix} 0 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} = \begin{pmatrix} 0 & \xi^T & t\xi^T \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$. Since $\xi \neq 0$, and $a \in M_2(\mathbb{C})$ is arbitrary, this implies that $R = \left\{ \begin{pmatrix} \lambda & \xi^T & t\xi^T \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \lambda \in \mathbb{C}, \xi \in \mathbb{C}^2, a \in M_2(\mathbb{C}) \right\}$. Simple computations show that

$$R_{\perp} = \left\{ \begin{pmatrix} 0 & 0 & 0\\ \eta_1 & y_1 & *\\ \eta_2 & * & y_2 \end{pmatrix} y_1, y_2 \in M_2(\mathbb{C}), y_1 + y_2 = 0, \eta_1, \eta_2 \in \mathbb{C}^2, \eta_1 + \eta_2 = 0 \right\}$$
(2)

If this space has P_1 , then $I_5 + R_{\perp}$ should be rank-1 for some element of R_{\perp} . However, this gives us matrices of the form $R_{\perp} = \begin{pmatrix} 1 & y_1 + I_2 & * \\ \eta_2 & * & y_2 + I_2 \end{pmatrix}$, which contradicts lemma 7.

Lemma 8. Suppose $z_{ij} \subseteq M_{sr}(\mathbb{C})$ and $\{c_{ji}\} \subseteq M_{rs}(\mathbb{C})$ such that $\sum_{i=1}^{s} \sum_{j=1}^{r} z_{ij} a c_{ji} b = 0$

0 , $\forall a \in M_r(\mathbb{C}), b \in M_s(\mathbb{C})$. If $c_{ji} \neq 0$ for some $1 \leq i \leq s, 1 \leq j \leq r$, then z_{ij} are linearly dependent.

Proof. We may assume
$$c_{11} \neq 0$$
 and the $(1, 1)$ entry of c_{11} is not zero. Replace c_{ji}
by $\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & 0 \end{pmatrix} c_{ji} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & 0 \end{pmatrix}$, we may assume $c_{ji} = \lambda_{ij} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & 0 \end{pmatrix}$, $\lambda_{11} = 1$.
Let x_{ij}^k be the k-th column of z_{ij} .Note that $z_{ij} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & 0 \end{pmatrix} = x_{ij}^1$. Then,
 $\sum_{i=1}^s \sum_{j=1}^r z_{ij} c_{ji} = 0$ implies $\sum_{i=1}^s \sum_{j=1}^r \lambda_{ij} z_{ij} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & 0 \end{pmatrix} = 0$ which implies
 $\sum_{i=1}^s \sum_{j=1}^r \lambda_{ij} x_{ij}^1 = 0$
Similarly, we can use $\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & 0 \end{pmatrix} c_{ji} = \lambda_{ij} \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & 0 \end{pmatrix}$ show $\sum_{i=1}^s \sum_{j=1}^r \lambda_{ij} x_{ij}^2 = 0$
0. Proceeding similarly, we obtain $\sum_{i=1}^s \sum_{j=1}^r \lambda_{ij} x_{ij}^k = 0$ for all $1 \le k \le r$.
Therefore, $\sum_{i=1}^s \sum_{j=1}^r \lambda_{ij} z_{ji} = 0$ which shows the z_{ji} are linearly dependent.

Lemma 9. Let $B \subseteq M_{r^2+s^2}(\mathbb{C}) = B(H)$ such that $\dim H = (r^2 + s^2)^2$ and $B = \{a^{(r)} \oplus b^{(s)} : a \in M_r(\mathbb{C}), b \in M_s(\mathbb{C})\}$. Then, B is a maximal P_1 algebra.

Proof. Since *B* has a separating vector, *B* has property P_1 . Suppose $B \subsetneq R \subseteq M_{r^2+s^2}(\mathbb{C})$ such that *R* has P_1 . Write $R = R_1 + J$ such that $B \subseteq R_1$, where R_1 is the semi-simple part and *J* is the radical part. By Lemma 1, $B = R_1$. Let $0 \neq X \in J$ and let $p = I_r^{(r)} \oplus 0$ and $q = p = I_s(s) \oplus 0$. Then, $pBp \subseteq pRp \subseteq B(pH)$ and pRp has property P_1 . By Lemma 5, pRp = pBp. Similarly, qRq = qBq. This implies we may assume $0 \neq x = \begin{pmatrix} 0_r^{(r)} & C \\ 0 & 0_s^{(s)} \end{pmatrix}, C \neq 0$. If $Z \in R_{\perp}$ such that

 $Z = \begin{pmatrix} x_1 & * & \dots & * & * & * & * \\ * & x_2 & * & \dots & * & & \\ & \ddots & & & & & \\ & & * & * & x_r & \dots & \\ & & & * & * & x_r & \dots & \\ & & & & & & \\ z_{11} & z_{12} & z_{13} & \dots & z_{1r} & y_1 & * & \dots & * \\ & & & & & \\ z_{21} & z_{22} & z_{23} & \dots & z_{2r} & * & y_2 & * & \dots & * \\ & & & & & \\ \vdots & & & & & \\ & & & & \\ z_{s1} & z_{s2} & z_{s3} & \dots & z_{sr} & * & \dots & * y_s \end{pmatrix} \\ \text{Then } x_1 + x_2 + \dots + x_r = 0_r \text{ and } y_1 + y_2 + \dots + y_s = 0_s. \text{ Note that } x(a^{(r)} \oplus b^{(s)} = \\ \begin{pmatrix} 0_r^{(r)} & cb^{(s)} \\ 0 & 0_s^{(s)} \end{pmatrix} \text{. Write } c = (c_{ij})_{1 \leq i \leq r, 1 \leq j \leq s}. \text{ Therefore, we have} \\ Tr \left(\begin{pmatrix} z_{11} & \dots & z_{1r} \\ \vdots \\ z_{s1} & \dots & z_{sr} \end{pmatrix} \begin{pmatrix} c_{11} & \dots & c_{1s} \\ \vdots \\ c_{r1} & \dots & c_{rs} \end{pmatrix} \begin{pmatrix} b \\ \ddots \\ b \end{pmatrix} \right) = 0 \\ \text{Simple computation shows that } Tr \left(\sum_{i=1}^s \sum_{j=1}^r z_{ij}c_{ji}b \right) = 0. \text{ Since } b \in \\ M_s(\mathbb{C}) \text{ is arbitrary } \left(\sum_{i=1}^s \sum_{j=1}^r z_{ij}c_{ji} \right) = 0. \\ \text{Note that} \end{cases}$

$$(a^{(r)} \oplus 0)x(0 \oplus b^{(s)}) = \begin{pmatrix} 0_r^{(r)} & a^{(r)}cb^{(s)} \\ 0 & 0_s^{(s)} \end{pmatrix} = \begin{pmatrix} 0_r^{(r)} & (ac_{ij}b)_{1 \le i \le r, 1 \le j \le s} \\ 0 & 0_s^{(s)} \end{pmatrix}$$
(3)

So, we have $\sum_{i=1}^{s} \sum_{j=1}^{r} z_{ij} a c_{ji} b = 0$, $\forall a \in M_r(\mathbb{C}), b \in M_s(\mathbb{C})$. By Lemma 8, this implies that z_{ij} are linearly dependent.

Suppose $I_{r^2+s^2} + z$ is rank 1 for some $z \in R_{\perp}$. Then $(z_{ij})_{1 \leq i \leq r, 1 \leq j \leq s}$ are rank1 matrices. So there are $\xi_1 \dots \xi_s \in \mathbb{C}^s, \eta_1 \dots \eta_r \in \mathbb{C}^r$ such that $z_{ij} = \xi_i \otimes \eta_j$. Since $\{z_{ij}\}$ are linearly dependent, either $\{\xi_i\}$ are linearly dependent or $\{\eta_j\}$ are linearly dependent. Without loss of generality, assume $\{\xi_i\}$ are linearly depenBy lemma 6, this matrix has rank ≥ 2 . This contradicts our assumption. \Box

We are now ready to prove Theorem 1.

Proof. By Lemma 1, if B has P_1 , then $dimB \leq k$. Assume B has property P_1 , and dimB = k. We claim $B = \bigoplus_{i=1}^r M_{(n_i)}^{n_i}(\mathbb{C}), k = \sum_{i=1}^r n_i^2$. We will proceed by induction on k. If k = 1, this is clear. Assume our claim is true for $k \leq n$. Let $B \subseteq M_{n+1}(\mathbb{C})$ be a semi-simple P_1 algebra and dim(B) = n + 1Suppose B has non trivial central projection $p, 0 . Then, <math>B = pBp \oplus (1-p)B(1-p)$. From this we can say $pBp \subseteq B(pH)$ and $(1-p)B(1-p) \subseteq B((1-p)H)$ are both semi-simple with property P_1 . By Lemma 1 dim(pBp) = dim(pH) and dim((1-p)B(1-p)) = dim((1-p)H). By induction, $pBp = \bigoplus_{i=1}^r M_{n_i}^{n_i}(\mathbb{C})$ and $(1-p)B(1-p) = \oplus M_{n_i}^{n_i}(\mathbb{C})$.

Suppose B does not have a nontrivial central projection. Then $B = M_r(\mathbb{C}) \subseteq M_{n+1}(\mathbb{C})$ and $\dim B = r^2 = n+1$, so $B = M_r(\mathbb{C})^{(r)}$.

Suppose $B \subsetneq R \subseteq M_k(\mathbb{C}) \in B(H)$ such that R has property P_1 . Let

 $B = R_1. \text{ Let } p_i \text{ be the projection of } B \text{ that corresponds to the } M_{n_i}^{(n_i)}. \text{ Let}$ $0 \neq x \in J. \text{ Then, we have } p_i B p_i \subseteq p_i R p_i \subseteq B(p_i H) \text{ and } p_i R p_i \text{ has prop$ $erty } P_1. \text{ By Lemma 5 } p_i R p_i = p_i B p_i, \text{ this implies we may assume } 0 \neq x =$ $\begin{pmatrix} 0_{n_1}^{(n_1)} & * & x_{12} & \dots & x_{1n_i} \\ 0 & 0_{n_2}^{(n_2)} & & & \\ & \ddots & \vdots \\ 0 & \dots & 0_{n_i}^{(n_i)} \end{pmatrix}$

We now assume $x_{12} \neq 0$. Then $(p_1 + p_2)x(p_1 + p_2) \subsetneq (p_1 + p_2)R(p_1 + p_2)$. But, by our previous lemma, after cutting down by two projections, we have the direct sum of two semi-simple algebras is already maximal P_1 , which contradicts that R will be maximal P_1 .