
Theorem 1. Let B ⊂ Mk(C) be a semi-simple algebra. If B has property P1,

then dimB ≤ k. Furthermore, if dimB = k, then B is a maximal P1 algebra.

Our primary goal is to prove this theorem. A maximal P1 algebra is an

algebra B with property P1 such that any algebra A,B ( A, A does not have

property P1. To prove this theorem, we will need a few lemmas first to assist

us.

Lemma 1. Let B ⊂ Mk(C) be a semi-simple algebra. If B has property P1,

then dimB ≤ k.

Proof. We will use induction on k. The case k = 1 is clear. Suppose this is true

for k ≤ n and let B ⊂ Mn+1(C) be a semi-simple algebra. We need to show

dimB ≤ n + 1. Suppose B has a non-trivial central projection, p, 0 < p < 1.

Then, B = pBp ⊕ (1 − p)B(1 − p). From this, we can see pBp ⊂ B(pH) and

(1− p)B(1− p) ⊂ B((1− p)H are both semi-simple algebras with property P1,

as proven earlier. By the assumption of induction dimpBp ≤ dim(pH) and

dim(1 − p)B(1 − p) ≤ dim(1 − p)H. Therefore, dimB = dim(pBp) + dim((1 −

p)B(1 − p)) ≤ dimpH + dim(1 − p)H = dimH = n + 1.

Now, let’s assume B does not have a nontrivial central projection. Then,

B = Mr(C) ⊂ Mn+1(C). Since B has P1, r2 ≤ n + 1, so r ≤ n + 1.

Lemma 2. Let B ⊂ M4(C). If B = M2(C), then B is a maximal P1 algebra.

Lemma 3. Suppose 0 6= a ∈ Mn(C). Then, for any a ∈ A, there exists finite

elements b1, b2....bk, c1, c2, ...ck, such that
∑k

i=1 biaci = In.

Proof. Note that Mn(C)aMn(C) is a two sided ideal of Mn(C) and Mn(C)aMn(C) 6=

0. So, Mn(C)aMn(C) = Mn(C), this implies the lemma.

The following well known lemma will be very helpful.
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Lemma 4. There are finitely many unitary matrices, u1, u2, ....uk ∈ Mn(C),

such that 1
k

∑k
i=1 uiau∗

i = Tr(a)
n

In for all a ∈ Mn(C).

Lemma 5. Let b ⊂ Mn2(C). If B = Mn(C), then B is a maximal P1 algebral.

We may write Mn2(C) = Mn(C)⊗Mn(C) and assume B = Mn(C)⊗In. Since

B has a separating vector, B has property P1.

Now, assume B ( R ⊆ Mn2(C) and R is a P1 algebra. We can write

R = R1 + J , such that B ⊆ R1, where R1 is the semi-simple part and J is the

radical of R. Since R has P1, R1 has P1, and by Lemma 1, dimR1 ≤ n2. Since

dimB = n2, we have R1 = B.

Suppose 0 6= x = (xij)1≤i,j≤n ∈ J with respect to the matrix units In ⊗

Mn(C). Note that with respect to the matrix units of In ⊗Mn(C), each element

of B = Mn(C) ⊗ In has the following form





a . . 0
0 a .. 0
.
.
.
0 0 ... a



), a ∈ Mn(C). Without

loss of generality, let’s assume x11 6= 0.

By Lemma 3, there exists a finite elemtns b1, ...bk, c1, ...ck ∈ Mn(C), such

that

∑k
i=1 bix11ci = In .

(1)

Let y = (yij)1≤i,j≤n =
∑k

i=1(bi ⊗ In)X(ci ⊗ In) ∈ J . By (1), we have y11 = In.

Next, we can choose unitary matrices u1, ...uk as in Lemma 4. Let z = (zij) =

∑k

i=1(ui ⊗ In)Y (u∗
i ⊗ In) ∈ J . Then, z11 = In and zij = λijIn for some

λij ∈ C, 1 ≤ i, j ≤ n. So, Z ∈ In ⊗ Mn(C).

Since z ∈ J , zn = 0, as elements in the radical are nilpotent. By the Jordan

Canonical theorem, there exists an invertible matrix w ∈ In ⊗Mn(C) such that

0 6= wzw−1 = ⊕k
i=1zi ∈ In ⊗Mn(C) and each zi is a Jordan block with diagonal

0. By replacing R with wRw−1, we may assume 0 6= z = ⊕k
i=1zi ∈ In ⊗Mn(C).

2



Suppose r = max{rankzi : 1 ≤ i,≤ k}. We may assume rankz1 = ... =

rankzs = r and rank zi < r for all s < i ≤ k. Then zr−1 = (⊕s
i=1z

r−1) ⊕ 0.

Note that zr−1 =





0 ... 0 1
0 ... 0 0
.
.
.
0 ... 0 0



. We may assume R is the algebra generated by

Mn(C) ⊗ In and In ⊗ zr−1.

Without loss of generality, we assume r = 2, and hence s = n
2 . The

general case can be proved similarly. Let t = ( a b
0 a ) , a, b ∈ Mn(C). Then,

R =











t 0 ...0
0 t 0... 0
.
.
.
0 0... t











. Let ti⊥ = ( x2i−1 ∗
yi x2i

). Then, simple computations show

that R⊥ =











t1
t2

.
.

.
t n

2











.Let m =
(

0 0
In 0

)

). Since this has P1, we should

be able to write

(m
m

.
.

.
m

)

plus an element of the preannihilator as a rank-1

matrix. However, if this is so, then we know 1+y1, 1+y2...1+ys are all rank-1.

However, summing all of these gives In +y1 + In +y2 + ....In +ys = s∗ In which

is rank at most s = n
2 < n. This is a contradiction.

Lemma 6. Suppose λ 6= 0 ∈ C andy1, y2, ..., y2 ∈ Mn(C) such that y1 +

y2 + ... + yn = 0. Suppose η1, η2, ..., ηn ∈ Cn are linearly dependent. Let

t =







































λ ∗ . . . ∗

η1 In + y1 ∗ . . ∗

η2 ∗ In + y2 ∗ ... ∗

.

.

.

ηn ∗ ... ∗ ∗ In + yn







































. This matrix has rank ¿ 1.

Proof. Note first that each ηi block is an n × 1 column vector. Since we are

saying they are linearly dependent, then we know that there are k vectors in the

set {ηi}
k
i=1 that are independent. Without loss of generality, assume that the

first k vectors are the linearly independent ones. Then, for any j > k, ηj can be
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written as a linear combination of the first k elements. Another way of viewing

this is saying that if we look at the matrix [η1η2...ηn], for any j > k, the j-th

row can be written as a linear combination of the first k rows. So, in our matrix

t, let’s assume it has rank one. On each ηi’s j-th row, we can row reduce them

to zero. To maintain rank-1, since we have the nonzero-entry in the top left, we

have to have the entire row containing a j-th entry has to be zero. Doing this

row reduction changes our yi to a y
′

i such that In + y
′

i has zero entries along it’s

row that it shares with the j-th entries of each ηi. However, we still maintain

the condition that
∑n

i=1 y
′

i = 0. These rows that contain these j row entries

occur in the k ∗ j + 1 row where 1 ≤ k ≤ n. So, since we know all these rows

have to be zero, we know something about the 1 + yi’s i ∗ j + 1 entry. We know

it has to be zero now. So, we can sum up each of those new 0 entries from each

1 + y
′

i. Doing this sum only over the position that it shares with the j-th row

of each ηi gives 0 =
∑n

i=1 1 + y
′

i =
∑n

i=1 1 +
∑n

i=1 y
′

i =
∑n

i=1 1 = n. However,

that gives us n = 0, which is impossible, hence contradicting our claim that this

is rank-1.

Lemma 7. Let B =⊂ M5(C) = B(H) such that dimH = 5 and B =



































λ 0 0

0 a 0

0 0 a













, λ ∈ C, a ∈ M2(C)























Then, B is a maximal P1 algebra.

Proof. Since B has a separating vector, B has property P1. Suppose B ⊂ R ⊆

M5(C) and R is a P1algebra. We can write R = R1 + J , such that B ⊆ R1,

where R1 is the semi-simple part and J is the radical part. By Lemma 1,

B = R1. Let 0 6= X ∈ J and let p =
(

1 0 0
0 0 0
0 0 0

)

and q =
(

0 0 0
0 I2 02

0 02 I2

)

. Then

qBq ⊆ qRq ⊂ B(PH) = M4(C). By Lemma 3, qBq = qRq. This implies we
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may assume 0 6= x =













0 ξT ηT

0 02 02

0 02 02













, where ξ, η ∈ C2.

Case 1: ξ and η are linearly independent. Then, x
(

0 0 0
0 a 0
0 0 a

)

∈ R. Since ξ

and η are linearly independent, and a ∈ M2(C) is arbitrary, this implies that

R =



































λ ξT ηT

0 a 0

0 0 a













λ ∈ C, ξ, η ∈ C2, a ∈ M2(C)























. Simple computations show

that R⊥ =



































0 ∗ ∗

0 y1 ∗

0 ∗ y2













y1, y2 ∈ M2(C), y1 + y2 = 0























Since we assume R

has property P1, I5 + R⊥ is rank-1 for some matrix in R⊥. This gives us a

matrix of the form R⊥ =
( 1 ∗ ∗

0 y1+I2 ∗
0 ∗ y2+I2

)

. However, this contradicts Lemma 7.

Case 2: ξ and η are linearly dependent. Without loss of generality, assume

η = tξ, so x =

(

0 ξT tξT

0 02 02
0 02 02

)

and x
(

0 0 0
0 a 0
0 0 a

)

=
(

0 ξT tξT

0 a 0
0 0 a

)

. Since ξ 6= 0, and a ∈

M2(C) is arbitrary, this implies that R =
{(

λ ξT tξT

0 a 0
0 0 a

)

λ ∈ C, ξ ∈ C2, a ∈ M2(C)
}

.

Simple computations show that

R⊥ =
{(

0 0 0
η1 y1 ∗
η2 ∗ y2

)

y1, y2 ∈ M2(C), y1 + y2 = 0, η1, η2 ∈ C2, η1 + η2 = 0
}

(2)

If this space has P1, then I5 + R⊥ should be rank-1 for some element of

R⊥. However, this gives us matrices of the form R⊥ =
( 1 ∗ ∗

η1 y1+I2 ∗
η2 ∗ y2+I2

)

, which

contradicts lemma 7.

Lemma 8. Suppose zij ⊆ Msr(C) and {cji} ⊆ Mrs(C) such that
∑s

i=1

∑r

j=1 zijacjib =

5



0 ,∀a ∈ Mr(C), b ∈ Ms(C). If cji 6= 0 for some 1 ≤ i ≤ s, 1 ≤ j ≤ r, then zij

are linearly dependent.

Proof. We may assume c11 6= 0 and the (1, 1) entry of c11 is not zero. Replace cji

by

( 1 0 ... 0
0 0 ... 0
...
0 ... 0

)

cji

( 1 0 ... 0
0 0 ... 0
...
0 ... 0

)

, we may assume cji = λij

( 1 0 ... 0
0 0 ... 0
...
0 ... 0

)

, λ11 = 1.

Let xk
ij be the k-th column of zij .Note that zij

( 1 0 ... 0
0 0 ... 0
...
0 ... 0

)

= x1
ij . Then,

∑s

i=1

∑r

j=1 zijcji = 0 implies
∑s

i=1

∑r

j=1 λijzij

( 1 0 ... 0
0 0 ... 0
...
0 ... 0

)

= 0 which implies

∑s
i=1

∑r
j=1 λijx

1
ij = 0

Similarly, we can use

( 1 0 ... 0
0 0 ... 0
...
0 ... 0

)

cji = λij

( 0 0 ... 0
1 0 ... 0
...
0 ... 0

)

show
∑s

i=1

∑r

j=1 λijx
2
ij =

0. Proceeding similarly, we obtain
∑s

i=1

∑r

j=1 λijx
k
ij = 0 for all 1 ≤ k ≤ r.

Therefore,
∑s

i=1

∑r
j=1 λijzji = 0 which shows the zji are linearly dependent.

Lemma 9. Let B ⊆ Mr2+s2(C) = B(H) such that dimH = (r2 + s2)2 and

B = {a(r) ⊕ b(s) : a ∈ Mr(C), b ∈ Ms(C)}. Then, B is a maximal P1 algebra.

Proof. Since B has a separating vector, B has property P1. Suppose B ( R ⊆

Mr2+s2(C) such that R has P1. Write R = R1 + J such that B ⊆ R1, where R1

is the semi-simple part and J is the radical part. . By Lemma 1, B = R1. Let

0 6= X ∈J and let p = I
(r)
r ⊕0 and q = p = Is(s)⊕0. Then, pBp ⊆ pRp ⊆ B(pH)

and pRp has property P1. By Lemma 5, pRp = pBp. Similarly, qRq = qBq.

This implies we may assume 0 6= x =
(

0(r)
r

C

0 0(s)
s

)

, C 6= 0. If Z ∈ R⊥ such that

6



Z =















































x1 ∗ ... ∗ ∗ ∗

∗ x2 ∗ .... ∗

. . .

∗ ∗ ∗ xr . . .

z11 z12 z13 . . . z1r y1 ∗ . . . ∗

z21 z22 z23 . . . z2r ∗ y2 ∗ . . . ∗

...

zs1 zs2 zs3 . . . zsr ∗ . . . ∗ys















































Then x1 +x2 + ...+xr = 0r and y1 +y2 + ...ys = 0s. Note that x(a(r)⊕b(s) =
(

0(r)
r

cb(s)

0 0(s)
s

)

. Write c = (cij)1≤i≤r,1≤j≤s. Therefore, we have

Tr

((

z11 ... z1r

...
zs1 ... zsr

)(

c11 ... c1s

...
cr1 ... crs

)(

b

. . .
b

))

= 0

Simple computation shows that Tr
(

∑s

i=1

∑r

j=1 zijcjib
)

= 0. Since b ∈

Ms(C) is arbitrary
(

∑s
i=1

∑r
j=1 zijcji

)

= 0.

Note that

(a(r) ⊕ 0)x(0 ⊕ b(s)) =
(

0(r)
r

a(r)cb(s)

0 0(s)
s

)

=







0
(r)
r (acijb)1≤i≤r,1≤j≤s

0 0
(s)
s







(3)

So, we have
∑s

i=1

∑r
j=1 zijacjib = 0, ∀a ∈ Mr(C), b ∈ Ms(C). By Lemma 8,

this implies that zij are linearly dependent.

Suppose Ir2+s2 + z is rank 1 for some z ∈ R⊥. Then (zij)1≤i≤r,1≤j≤s are

rank1 matrices. So there are ξ1...ξs ∈ Cs, η1...ηr ∈ Cr such that zij = ξi ⊗ ηj .

Since {zij} are linearly dependent, either {ξi} are linearly dependent or {ηj} are

linearly dependent. Without loss of generality, assume {ξi} are linearly depen-
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dent. Now, Ir2+s2+z is a matrix of the form



























Ir + x1

. . .

ξ1 ⊗ η1 . . . ξn ⊗ η1 Is + y1

...

ξs ⊗ η1 . . . ξs ⊗ ηr ∗ . . . Is + ys



























Since x1 + ... + xr = 0, one entry of Ir + xi is not zero for some 1 ≤ i ≤ r.

We may assume the (1, 1) entry of Ir + x1 is not zero. Let η1 =





α1
α2

...
αr



. Then

the matrix


























Ir + x1

. . .

α1ξ1 . . . Is + y1

...

α1ξs . . . ∗ . . . Is + ys



























By lemma 6, this matrix has rank ≥ 2. This contradicts our assumption.

We are now ready to prove Theorem 1.

Proof. By Lemma 1, if B has P1, then dimB ≤ k. Assume B has property P1,

and dimB = k. We claim B = ⊕r
i=1M

ni

(ni)
(C), k =

∑r

i=1 n2
i . We will proceed by

induction on k. If k = 1, this is clear. Assume our claim is true for k ≤ n. Let

B ⊆ Mn+1(C) be a semi-simple P1 algebra and dim(B) = n + 1Suppose B has

non trivial central projection p, 0 < p < 1. Then, B = pBp ⊕ (1 − p)B(1 − p).

From this we can say pBp ⊆ B(pH) and (1 − p)B(1 − p) ⊆ B((1 − p)H) are

both semi-simple with property P1. By Lemma 1 dim(pBp) = dim(pH) and

dim((1− p)B(1− p)) = dim((1− p)H). By induction, pBp = ⊕r
i=1M

ni

ni
(C) and

(1 − p)B(1 − p) = ⊕Mni

ni
(C).

Suppose B does not have a nontrivial central projection. Then B = Mr(C) ⊆

Mn+1(C) and dimB = r2 = n + 1, so B = Mr(C)(r).

Suppose B ( R ⊆ Mk(C) ∈ B(H) such that R has property P1. Let
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B = R1. Let pi be the projection of B that corresponds to the M
(ni)
ni

. Let

0 6= x ∈ J . Then, we have piBpi ⊆ piRpi ⊆ B(piH) and piRpi has prop-

erty P1. By Lemma 5 piRpi = piBpi, this implies we may assume 0 6= x =


















0
(n1)
n1 ∗ x12 . . . x1ni

0 0
(n2)
n2

. . .
...

0 . . . 0
(ni)
ni



















We now assume x12 6= 0. Then (p1 + p2)x(p1 + p2) ( (p1 + p2)R(p1 + p2).

But, by our previous lemma, after cutting down by two projections, we have the

direct sum of two semi-simple algebras is already maximal P1, which contradicts

that R will be maximal P1.
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