TOPICS COURSE IN GEOMETRY OF METRIC SPACES

FLORENT BAUDIER

In this course selected topics of an emerging and fast-developing field, often
refer to as quantitative metric geometry will be discussed. We will touch upon
fundamental questions that originate from problems in theoretical computer science,
group theory, topology, or theoretical physics. The common feature of all these
problems is that they can be expressed in geometric terms. Building a geometric
intuition will be central in our exposition. The course will be divided into three
independent parts of roughly equal weight. All three parts are dealing with the
general problem of “embedding faithfully” a certain type of metric space into a
“nice” Banach space.

The first part is oriented towards applications in theoretical computer science
and focuses on the quantitative theory of the bi-Lipschitz embeddability of finite
metric spaces, in particular of finite graphs. It will be made accessible to anyone
with a basic background of discrete mathematics, and discrete probabilities.

Part I: Low Distortion Embeddability of Finite Metric Spaces

1. Low distortion embeddings (stochastic decompositions of finite metric spaces,
Bourgain’s embedding)

2. Metric invariants (Enflo type, distortion lower bound for the Hamming cubes,
Markov convexity, distortion lower bound for trees)

3. Dimension reduction (Johnson-Lindenstrauss reduction to logarithmic dimen-
sion in ¢35, dimension reduction lower bound in ¢;)

4. Expander graphs (spectral and combinatorial definitions, ¢,-distortion lower
bound)

5. Application to the sparsest cut problem

The second part deals with the metric geometry of infinite metric spaces, in
particular classical Banach spaces. Motivations from problems in topology and
noncommutative geometry will be discussed.

Part II: Embeddability of Infinite Metric Spaces

1. Lipschitz embeddability of locally finite metric spaces (the gluing technique,
Ostrovskii’s finite determinacy theorem)

2. Large scale geometry of Banach spaces (snowflaking exponents, link beetwen
the asymptotic structure of a Banach space and its coarse Lipschitz geometry,
Kalton’s property Q)

The last part has a strong geometric group theoretic flavor but requires only a
basic knowledge in group theory.

Part III: Large Scale Geometry of Finitely Generated Groups

1. Groups as geometric objects (left-invariant metrics on discrete countable groups,
bounded geometry property of finitely generated groups, property A and exact-
ness)

2. Compression theory (large Hilbertian compression implies exactness, random
walks and compression exponent lower bounds)

3. Coarse embeddability of amenable groups (introduction to amenability, equivari-
ant embeddings, a glimpse at the geometry of the discrete Heisenberg group)
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Motivations. As networks and huge collection of data appear in so many dif-
ferent contexts, optimization problems in networks and data mining are becoming
increasingly important. Quantitative geometry, in particular the theory of metric
embeddings, received much attention in recent years by mathematicians as well as
computer scientists, and has been applied in many algorithmic applications. The
problem of finding sparse cuts in a graph is one variant of many graph problems
where the goal is, loosely speaking, to find an edge cut with few edges that sepa-
rates the graph into large components. Such problems have practical applications,
for instance in the analysis of telecommunication networks, but also fundamental
applications as a tool in the design of divide-and-conquer algorithms. Most vari-
ants of such problems are computationally extremely hard to solve, implying that
it is unlikely to expect fast algorithms to provide exact solutions of the problems
for large instances. In such cases one would like to design fast algorithms that
guarantee approximate solutions close to the optimal solution. In the 90’s, Linial,
London and Rabinovich in a landmark article established the connection between
the design of an approximation algorithm for the sparsest cut problem and the the-
ory of bi-Lipschitz embeddings (in particular Bourgain’s embedding theorem and
the Johnson-Lindenstrauss lemma). This topic will be discussed in the first part of
this course.

Since the early 1980’s, A. Connes and others have been developing the subject of
noncommutative geometry, a natural generalization of Riemannian geometry (much
as Riemannian geometry, in turn, provides a natural generalization of Euclidean
geometry). Its physical interest stems from the fact that it suggests an elegant geo-
metric reinterpretation of the standard model of particle physics coupled to Einstein
gravity. Part of Connes noncommutative program bridges classical geometry and
topology, the best example arguably being the Baum-Connes conjecture which sug-
gests that two objects associated to a group (an analytic one and a topological one)
can be identified. The Baum-Connes conjecture “implies” many celebrated conjec-
tures, in particular the Novikov conjecture. The latter conjecture, which says that
the higher signatures (which are certain numerical invariants of smooth manifolds)
are homotopy invariants, is one of the most important unsolved problem in topology.
In his famous essay from 1993, M. Gromov discussed at length the efficiency of the
geometric language for isolating interesting properties of groups. In 1995 Gromov
hinted at that understanding the groups whose large-scale geometry is compatible
in a certain sense with the geometry of a Hilbert space or a superreflexive (i.e.,
admits an equivalent uniformly convex norm) Banach space should be interesting
regarding the Novikov conjecture. Building upon a groundbreaking work of G. Yu,
Gromov’s intuition was eventually proved to be true in the mid-2000’s by Kasparov
and Yu. The attention was then drawn to the coarse geometry of Banach spaces,
which contrary to its uniform counterpart, had been little considered up to that
time. The large scale geometry of infinite metric spaces, in particular groups, is the
common ground of the second and third part of this course.
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