SYLLABUS FOR MATH 689 SPECIAL TOPICS IN DEEP
LEARNING: THEORY AND APPLICATIONS

COURSE INFORMATION

Instructor. Boris Hanin, Blocker-620B, bhanin@math.tamu.edu, 979-845-3261.
Lectures. TR 11:20am-12:35pm (room TBA).

Prerequisites. Working knowledge of linear algebra and probability.

Office Hours. 1-3pm on Wednesdays or by appointment in Blocker-620B.

Grade Composition. The final grade will have three components: final project
(50%), paper summary (40%), and in-class participation (10%). The paper summary,
due 10/04, is a written summary of article or collection or articles about neural net-
works. The instructor will suggest many possible articles, athough students are free to
choose their own (in consultation with the instructor). The final project is an article
that the student plans to submit to ICML 2019. The article should contain original
research.

Grading Scale. The final letter grades will be assigned as follows: A (88% — 100%),
B (76% — 87%), C (64% — 75%), D (52% — 63%), F (0% — 51%).

Course Description. This course will give an introduction to both the theory and
practice of deep learning. We will cover the practical and theoretical properties of
various neural net architectures (fully connected, convolution, recurrent, etc), training
neural nets (i.e. optimizers, regularization, backpropagation, learning rate vs. batch
size etc), as well a survey of rigorous approaches from probability, theoretical physics,
and approximation theory to understanding what neural nets are good for and why
they work so well in practice.

The main practical outcome of this course is that every student will write a paper
with the goal of submitting it to ICML 2019.

Learning Outcomes. This course will teach you the basic uses of neural networks.
You will learn:

(1) the ideas behind and differences between popular neural net architectures:
ConvNets, ResNets, RNNs, etc;

(2) some of the practical tricks and considerations for training a neural network:
initialization, batch normalization, dropout, early stopping, learning rate de-
cay, etc;

(3) what is theoretically known about the expressive power of neural networks;

(4) what is theoretically known about the loss surfaces of neural networks;

(5) what is theoretically known about neural networks at initialization;
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Lecture Schedule. Please find below the lecture and project schedule.
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Lecture 7
Lecture 8
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Lecture 13
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Lecture 22
Lecture 23
Lecture 24

Course overview

Computational graphs

Representational power of neural nets: [Cyb89|, [Bar93]
Deep vs. shallow: [MPCBI14, [STRI17]

Questions from approximation theory

Training by backpropagation

SGD practice: momentum, exploding gradients, early stopping
SGD: saddles [LSJR16], bounded memory [MT17]

Loss surface for linear models: [BH89]

Loss surface for linear models: [Kaw16]

Loss surface for 1 hidden layer models: [GMI17]
Generalization: [ZBHT16]

Paper Summary Due

ConvNets for machine vision

ResNets: [HZRS16]

Neural nets at initialization: activations [HR18]

Neural nets at initialization: gradients [Hanl18]

Neural nets for NLP: word embeddings [LM14, [PSM14]
RNNs: LSTMs [HS97, HBET01], Seq2Seq [SVL14]
Attention: [VSP™17]

DL via mean field theory: [PLRT16, RPK™16, [SGGSDI6]
DL via statistical field theory: [SPSD17]

Deep reinforcement learning

Deep reinforcement learning

Deep reinforcement learning

Final Project Due

No Class: Thanksgiving

No Class: Thanksgiving

Final Presentations

Final Presentations

Final Presentations

Americans with Disabilities Act (ADA). The Americans with Disabilities Act
(ADA) is a federal anti-discrimination statute that provides comprehensive civil rights
protection for persons with disabilities. Among other things, this legislation requires
that all students with disabilities be guaranteed a learning environment that pro-
vides for reasonable accommodation of their disabilities. If you believe you have a
disability requiring an accommodation, please contact Disability Services, currently
located in the Disability Services building at the Student Services at White Creek
complex on west campus or call 979-845-1637. For additional information, visit http:
//disability.tamu.edu.


http://disability.tamu.edu
http://disability.tamu.edu
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Academic Integrity. Remember: “An Aggie does not lie, cheat, or steal, or tolerate
those who do.” For additional information please visit http://aggiehonor.tamu.edu.
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