

Title: Introduction to Probability in Banach Spaces and Applications

Course Description:

This course will cover fundamental probabilistic inequalities/notions that should be of interest to a wide range of students (and that every student in Analysis should know about) in a somewhat organized fashion.

Some real-valued inequalities:

 Khintchine's inequalities (applications to isomorphic embedding of ℓ_2 into L_p)

 Rosenthal's inequalities

 Johnson-Maurey-Schechtman-Tzafriri inequalities (application to quantitative obstruction to isomorphic embeddability between L_p -spaces) stable random variables (application to isometric embeddings between L_p -spaces)

 Concentration of Lipschitz functions (application to dimension reduction via Johnson-Lindenstrauss lemma)

Some vector-valued inequalities:

 Basics of Banach space-valued random variables

 Symmetrization

 Kahane's contraction principle

 Khintchine-Kahane inequalities

Type and cotype:

 Basic theory and duality

 Type and cotype of classical Lebesgue spaces (application to quantitative obstruction to isomorphic embeddings)

 Pisier's ℓ_1 -theorem

Some martingale inequalities:

 Pisier's martingale type and martingale cotype (application to uniformly convex/smooth renormings)

 Martingale inequalities in barycentric metric spaces

 Application to metric invariants in the Ribe program (e.g., Markov type, Enflo type, Markov convexity....) and the geometry of graphs (e.g., with large girth, Hamming cubes, trees, diamonds....)

 No dimension reduction in ℓ_1

Pisier's inequality:

 Basics of Harmonic Analysis on the discrete hypercubes

 Basics of Markov semigroups (mostly the case of the heat semigroup on the discrete hypercubes)

 Application of Pisier's inequality to the Enflo problem

 Pisier's inequality in UMD spaces

Talagrand's influence inequality:

 The classical Poincaré inequality

 Bonami-Beckner hypercontractivity inequality

Derivation of the KKL-inequality from Talagrand's influence inequality
Applications to Analysis of Boolean Functions and Social Choice.
KKL-type is equivalent to type 2

If time permits:

Vector-valued versions of Talagrand's influence inequality
Talagrand type and embeddability of quotients of the Hamming cubes