
Solutions to BC Exam
Texas A&M High School Math Contest

2 November, 2024

1. All positive integers are written consecutively (starting from 1) as a single sequence of decimal
digits. Find the 2024th digit in that sequence.

Solution. The 9 one-digit numbers �ll the �rst 9 digits in the sequence. The 90 two-digit
numbers �ll the next 2 · 90 = 180 digits. The 900 three-digit numbers �ll the next 3 · 900 = 2700
digits. Since 2024 = 9+180+3 ·611+2, the 2024th digit is the 2nd digit of the 612th three-digit
number. The 1st three-digit number is 100. Hence the 612th three-digit number is 711. Its 2nd
digit is 1.

Answer: 1.

2. In triangle △ABC, AB = 3, AC = 5, and the angle ∠ABC is double the angle ∠ACB. Find
the length of side BC.

Solution. As shown below, draw a line segment BD to have AD = 3. Since ∠ADB = 2θ,
∠DAC = θ, and hence △DAC is isosceles. This implies AD = DC = 3.

A

B CDH

2θ θ

3
5

Let H be the foot of the perpendicular from A to BC, and let BH = x. Applying the
Pythagorean theorem in △ABH and △ACH, we have:

32 − x2 = 52 − (3 + x)2 or x =
7

6
.

Thus,

BC = 2x+ 3 = 2× 7

6
+ 3 =

16

3
.

Answer:
16

3

3. In a soccer tournament, every two teams played each other twice. What was the number of
participating teams if the total number of games played was 182?

Solution. Without loss of generality we may assume that in every pair of teams, each team
hosted the other one once and visited the other one once. Then every team hosted every other
team exactly once. It follows that the number of games played was n(n − 1), where n is the
number of participating teams. We are given that n(n − 1) = 182. Hence n2 − n − 182 = 0.
This quadratic equation in n has two solutions: n = 14 and n = −13. Only the positive solution
makes sense here.

Answer: 14
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4. The �gure below shows a con�guration of one large square and four smaller squares. Find the
edge length of a smaller square if AE = 13.

A

E

Solution. We use the similarity of triangles in the following �gure. Let EB = x. Then
AB = CD = 13 + x.

A

B C

D

E

F

Since ∠EFB = ∠FDC, the two triangles △EFB and △FDC are similar with the ratio:

EF : FD = 1 : 4.

This implies FC = EB × 4 = 4x, and so

BF : CD = 13 + x− 4x : 13 + x = 1 : 4 ⇒ x = 3.

Thus, BF = 4 and EF = 5.

Answer: 5

5. Find the minimal possible value of the expression x+
2

x
, where x > 0.

Solution. The expression x +
2

x
is de�ned for any x ̸= 0. Its value is positive if and only if

x > 0. Therefore our task is to �nd the smallest positive value of a parameter a for which the

equation x +
2

x
= a has a real solution x. The equation is equivalent to a quadratic equation

x2 − ax+ 2 = 0. We can transform the latter as follows:

x2 − ax+
a2

4
− a2

4
+ 2 = 0,(

x− a

2

)2
− a2

4
+ 2 = 0,(

x− a

2

)2
=

a2

4
− 2.

It follows that a real solution x exists if and only if a2/4 − 2 ≥ 0 or, equivalently, a2 ≥ 8. The
smallest positive value of a that satis�es this condition is

√
8 = 2

√
2.

Answer: 2
√
2
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6. A circle is tangent to one side of a square and passes through two other vertices of the square,
as shown in the �gure below. If the square's side length is 8, �nd the area of the circle.

Solution. Let AB be a diameter and draw line segments AC, CD, and DB as in the �gure
below.

A E B

C

D

Being inscribed angles of an arc
⌢
CB ∠CAB and ∠CDB are congruent. From the similarity

between △AEC and △DEB, we have

AE : EC = DE : EB ⇒ 8(2r − 8) = 16

where r is the radius of the circle.

Since r = 5, the area is 25π.

Answer. 25π

7. Two squares, ABCD and EBFG, are positioned as shown in the �gure below. If AB bisects
EG and EG = 2, �nd the area of the shaded region.

A

B C

D

E

F

G

Solution. Let H and I be the midpoints of EG and BF , respectively. Triangles △HEB and
△HAG are similar with the ratio HB : HG =

√
5 : 1. This implies

AG =
2√
5
, HA =

1√
5
, and BA =

√
5 +

1√
5
=

6√
5
.

The area A of the shaded region can be computed as

A = Area (ABCD) −Area (△HBI) −Area (HIFG) −Area (△HAG)

=

(
6√
5

)2

− 1− 2− 1

2
× 2√

5
× 1√

5
= 4.

Answer. 4
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8. Find a positive number x such that x = 1 +
1

1 +
1

1 +
1

x

.

Solution. For any x > 0 we can simplify the nested fraction step by step as follows:

1 +
1

x
=

x+ 1

x
, 1 +

1

1 +
1

x

= 1 +
x

x+ 1
=

2x+ 1

x+ 1
,

1 +
1

1 +
1

1 +
1

x

= 1 +
x+ 1

2x+ 1
=

3x+ 2

2x+ 1
.

Hence we are looking for a positive solution of the equation

x =
3x+ 2

2x+ 1
⇐⇒ x(2x+ 1)− (3x+ 2)

2x+ 1
= 0 ⇐⇒ 2x2 − 2x− 2

2x+ 1
= 0.

For a positive x, this is equivalent to the quadratic equation x2 − x − 1 = 0. The quadratic
equation has two solutions: 1

2 (1−
√
5) and 1

2 (1 +
√
5). The solution 1

2 (1 +
√
5) is positive.

Alternative solution: It is easy to observe that any solution of the equation x = 1 +
1

x
is also

a solution of the given equation by repeatedly substituting x for 1 +
1

x
in the right side of the

given equation. The equation x = 1 +
1

x
is equivalent to the quadratic equation x2 − x− 1 = 0,

which has two solutions: 1
2 (1−

√
5) and 1

2 (1 +
√
5). The solution 1

2 (1 +
√
5) is positive.

Answer:
1

2
(1 +

√
5)

9. A circle is tangent to three sides of a rectangle ABCD, as shown in the �gure. A diagonal
intersects the circle at two points, forming a chord. If BC = 4

√
3 and CD = 4, �nd x2, where x

is the length of the chord.

A

B C

D

Solution. We observe that ∠DBC = 30◦ and the sides of △BCD satisfy:

BD : BC : CD = 2 :
√
3 : 1.

Let O be the center of the circle, and let P , Q, R, and S be points, as shown in the �gures below.
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A

B C

D

O

O

D

R

S

P

Q

We �rst �nd PQ, half of the chord. The circle's radius is OS = SD = 2.

By similarity △BCD ∼ △DSR, we have

SR = DC × SD

BC
= 4× 2

4
√
3
=

2√
3
,

so

OR = OS − SR = 2− 2√
3
.

From the ratio OR : OQ : QR = 2 :
√
3 : 1, we �nd

OQ = OR×
√
3

2
=

(
2− 2√

3

) √
3

2
=
√
3− 1.

Now, apply the Pythagorean theorem to △OPQ to have

PQ2 = OP 2 −OQ2 = 4− (
√
3− 1)2 = 2

√
3,

so
x2 = 4PQ

2
= 8
√
3.

Answer. 8
√
3

10. Consider a triangle with sides of lengths 7, 8, and 9. A circle with radius 1 rolls along the
triangle's interior, always tangent to at least one side as it rolls along. Determine the length of
the path traced by the center of the circle as it completes one full revolution around the triangle's
interior. Reduce and rationalize the denominator of your �nal answer.

Solution. Consider a triangle △ABC with side lengths BA = 7, AC = 8, and BC = 9, as
shown in the �gure below. The path traced by the center of the circle forms a smaller triangle
△A′B′C ′ inside △ABC. Since the corresponding angles of △A′B′C ′ and △ABC are congruent,
the two triangles are similar. Let the side lengths of △A′B′C ′ be denoted by 7x, 8x, and 9x,
where x represents the scaling factor between the two triangles.
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To �nd x, we use the area of the triangle. On one hand, Heron's formula, which one can show
using the Pythagorean theorem, yields

s =
7 + 8 + 9

2
= 12, Area =

√
12(12− 7)(12− 8)(12− 9) =

√
12 · 5 · 4 · 3 = 12

√
5

The triangle consists of three trapezoids and a smaller triangle △A′B′C ′. With the similarity
ratio 1 : x, we have

12
√
5 =

1

2

[
(7 + 7x) + (8 + 8x) + (9 + 9x)

]
+ 12

√
5x2,

which implies

12
√
5x2 + 12x+ 12(1−

√
5) = 0, or

√
5x2 + x+ (1−

√
5) = 0.

We have

x =
−1±

√
1− 4

√
5(1−

√
5)

2
√
5

=
−1±

√
21− 4

√
5

2
√
5

=
−1± (

√
20− 1)

2
√
5

By rationalizing the positive root, we have

x =

√
20− 2

2
√
5

=

√
100− 2

√
5

10
=

5−
√
5

5

The length of the path is

7x+ 8x+ 9x = 24x = 24

(
5−
√
5

5

)
=

120− 24
√
5

5

Alternate Solution: The perimeter of △A′B′C ′ is equal to the perimeter of △ABC minus the
perimeter of the triangle similar to △ABC with an inscribed circle of radius 1. As stated above,
the area of △ABC = 12

√
5 and the semiperimeter is 12, so the radius of the circle inscribed

in △ABC =
√
5. Therefore, the perimeter of △A′B′C ′ = 24 − 24√

5
, which rationalizes to the

previous answer.

Answer.
120− 24

√
5

5

11. Inside a square, a pair of opposite sides is connected by three line segments with lengths 5, 1,
and 4, in that order, as shown below. Find the area of the shaded region.

5

1

4
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Solution. Label the points of the square A, B, C, and D, and label points E and F as shown
in the �gure below. Choose point X on AE such that AX = 4 (so EX = 1). By rotational

symmetry, the area of△XEF (which is
1

2
) plus the original shaded area is half the area of square

ABCD. To �nd the area of the square, note that the diagonal AC bisects FX at point we will
call O. Draw a line segment OP perpendicular to EX. Then △APO is a right triangle with legs

AP =
9

2
and OP =

1

2
, so AO =

√
82

2
and AC = 2AO =

√
82. Then the area of the square is

1

2
(
√
82)2 = 41, so our original shaded area is

1

2
(41)− 1

2
= 20.

Answer 20.

12. Let c be a real solution of the equation x4−3x+1 = 0. Evaluate the expression c6+c4−3c3+c2−3c.

Solution. Since c4 − 3c + 1 = 0, we obtain that c4 = 3c − 1. Then c6 = c2(3c − 1) = 3c3 − c2.
It follows that

c6 + c4 − 3c3 + c2 − 3c = (3c3 − c2) + (3c− 1)− 3c3 + c2 − 3c = −1.

Answer: −1

13. In how many ways can you draw four diagonals inside a convex heptagon, without intersecting
each other, to divide it into �ve triangles, such that each triangle shares at least one side with
the heptagon?

Solution. Let C(n) denote the number of ways to draw n− 3 non-intersecting diagonals inside
a convex n-gon, dividing it into n− 2 triangles. We �rst show C(7) = 42.

For smaller polygons, we have C(4) = 2 and C(5) = 5.

To �nd C(6), consider a hexagon with vertices P1, P2, . . . , P6. The edge P1P2 can form a triangle
with P3, P4, P5, or P6. For each case, we calculate the number of ways to divide the remaining
polygon:

� With △P1P2P3, there are C(5) = 5 ways to divide the remaining pentagon.

� With △P1P2P4, there are C(4) = 2 ways to divide the remaining quadrilateral.

� Similarly, for △P1P2P5 and △P1P2P6, we have 2 and 5 ways, respectively.

Thus,
C(6) = 5 + 2 + 2 + 5 = 14.
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1 2

3
3

4

4 56

1 2

5

6 7

By a similar process, we compute:

C(7) = C(6) + C(5) + 2C(4) + C(5) + C(6) = 42.

We exclude triangulations where a triangle does not share a side with the heptagon. There are
7 such cases:

△P1P3P5,△P1P3P6,△P1P4P6,△P2P4P6,△P2P4P7,△P2P5P7, and △P3P5P7.

Each of these cases results in 2 possible triangulations of the remaining quadrilateral (see second
�gure above). Therefore, the number of invalid triangulations is 7× 2 = 14.

Thus, the number of valid triangulations is:

C(7)− 14 = 42− 14 = 28.

Answer: 28

14. Consider a fraction
6n− 1

7n+ 1
, where n is a positive integer. Find the smallest value of n for which

the fraction is not in lowest terms.

Solution. The given fraction is not in lowest terms if its numerator a = 6n−1 and denominator
b = 7n + 1 have a common prime divisor p. If this is the case, then the prime number p also
divides the numbers c = b− a = n+ 2 and d = a− 6c = −13. Hence p = 13. Conversely, if the
number c is divisible by 13 then so are the numbers a = 6c− 13 and b = a+ c.

Thus the given fraction is not in lowest terms if and only if the number n+ 2 is divisible by 13.
The smallest value of n for which this happens is 11.

Answer: 11.

15. All real solutions of the inequality
√
3− 2x− x2 > x+1 �ll an interval of the real line. Find the

length of that interval.

Solution. In the case x+ 1 < 0, the given inequality is equivalent to

3− 2x− x2 ≥ 0 ⇐⇒ (3 + x)(1− x) ≥ 0 ⇐⇒ −3 ≤ x ≤ 1.

In the case x+ 1 ≥ 0, the given inequality is equivalent to

3−2x−x2 > (x+1)2 ⇐⇒ 2x2+4x−2 < 0 ⇐⇒ 2(x+1)2 < 4 ⇐⇒ −1−
√
2 < x < −1+

√
2.

It follows that the solution set is the union of two intervals [−3,−1) and [−1,−1 +
√
2). The

union is the interval [−3,−1 +
√
2), which has length 2 +

√
2.

Answer: 2 +
√
2.
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16. From each vertex of a square with side length 1, draw a line segment to the midpoint of the
opposite side's adjacent edges, as shown in the �gure. Find the area of the shaded octagon
formed by these 8 line segments.

Solution: Consider the smaller square with vertices A, B, C, and D, containing the octagon,
as shown in the left �gure below. We �rst demonstrate that the area of this smaller square is 1

5 .
To do this, extend the four line segments to create four additional smaller squares. Notice four
pairs of congruent triangles, such as △JBE and △JFH. By using these congruences, we can
express the area of the original square as the sum of the areas of the �ve smaller squares.
Therefore, the area of square □ABCD is 1

5 .

A B

CD D
L

I JJ K

HN O
H

E

F

The area of the octagon is the area of □ABCD minus four times the shaded triangle in the
second �gure. To �nd this area, draw line segments IJ and KH and utilize ratios of similarity.
It's immediate to see

IK =
1

2
×NO =

1

4
,

and so the area of △IKH becomes

1

2
× IK × JH =

1

16
.

To this end, we want to know the ratio DL : IH. First, from the similarity between △DKI and
△DNH, we have

ID : DH = IK : NH = 1 : 4 or ID =
1

5
IH

From the similarity between △LKI and △LOH, we have

IL : LH = IK : OH = 1 : 2 or IL =
1

3
IH

Therefore,

DL =

(
1

3
− 1

5

)
IH =

2

15
IH,
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Now, we have

Area (△KLD) =
2

15
Area (△IKH) =

2

15
× 1

16
=

1

120

The area of the octagon is

Area (□ABCD) − 4×Area (△KLD) =
1

5
− 1

30
=

1

6

Answer:
1

6

17. Consider a rectangular box with side lengths 1, 2, and 3. A plane cuts through the box, passing
through the two opposite vertices A and G and containing a shortest path between these vertices
on the box's surface. Find the area of the cross-section formed by this plane.

Solution. Consider a rectangular box with side lengths 1, 2, and 3. Let the vertices of the box
be labeled A,B, . . . ,H as shown in the �gure. Assume without loss of generality that AB = 1,
BC = 2, and CG = 3.

A B 

C
A B C C

D

E F

G E GF E GH
H

P

A D A

G

P

QQ

The �rst planar �gure shows a shortest path on the box's surface passing along edge FB, giving
AP =

√
2 and PG = 2

√
2. Similarly, another shortest path passing along edge HD gives

GQ =
√
2 and QA = 2

√
2. (NOTE that placing points P and Q on EF and CD in a minimal

way as above gives us a longer path of length 5
√
2. Similarly, placing the points on BC and EH

yields a path of length 4
√
2).

To �nd the area of the cross-section, we calculate the diagonal of the box joining A and G.
Applying the Pythagorean theorem twice��rst on △ABC and then on △ACG�we �nd:

AG =
√
12 + 22 + 32 =

√
14.

The cross-section forms a quadrilateral consisting of two triangles, each with sides
√
2, 2
√
2, and√

14. Using Heron's formula, we calculate the area of one of these triangles. The semi-perimeter
s is:

s =

√
2 + 2

√
2 +
√
14

2
.

The area α of one triangle is:

α =

√
s(s−

√
2)(s− 2

√
2)(s−

√
14).

Now, simplifying the product of terms:

α2 =
(3
√
2 +
√
14)(3

√
2−
√
14)(
√
2 +
√
14)(
√
14−

√
2)

16
=

(18− 14)(14− 2)

16
=

48

16
= 3.

10



Thus, α =
√
3.

Therefore, the total area of the cross-section is:

2α = 2
√
3.

Answer: 2
√
3

18. How many distinct real roots does the following equation have:

(2x2 − 5x+ 2)3 + (6x2 − x− 1)3 = (8x2 − 6x+ 1)3 ?

Solution: Let y(x) = 2x2 − 5x+2 and z(x) = 6x2 − x− 1. Then 8x2 − 6x+1 = y(x) + z(x) so
that the equation can be rewritten as(

y(x)
)3

+
(
z(x)

)3
=
(
y(x) + z(x)

)3
.

After expanding the right-hand side, we obtain(
y(x)

)3
+
(
z(x)

)3
=
(
y(x)

)3
+ 3
(
y(x)

)2
z(x) + 3y(x)

(
z(x)

)2
+
(
z(x)

)3
.

This simpli�es to

3
(
y(x)

)2
z(x) + 3y(x)

(
z(x)

)2
= 0,

which is equivalent to
y(x) z(x)

(
y(x) + z(x)

)
= 0.

It follows that a real number x is a root of the given equation if and only if y(x) = 0 or z(x) = 0 or
y(x)+z(x) = 0. The equation 2x2−5x+2 = 0 has roots 1/2 and 2. The equation 6x2−x−1 = 0
has roots −1/3 and 1/2. The equation 8x2 − 6x+ 1 = 0 has roots 1/4 and 1/2. Thus the given
equation has four distinct roots: −1/3, 1/4, 1/2 and 2.

Answer: 4. [ The roots are −1/3, 1/4, 1/2 and 2. ]

19. Consider points P1, P2, . . . , P100 on side BC of an isosceles triangle △ABC with
AB = AC = 2. For each point Pi, de�ne ki = AP 2

i + BPi × PiC for i = 1, 2, . . . , 100. Find the
sum k1 + k2 + · · ·+ k100

Solution. Draw the height of the triangle AM , which bisects BC. Let MPi = x, AM = h,
and BM = CM = a. Then AP 2

i = h2 + x2, BPi × PiC = (a + x)(a − x) = a2 − x2. So
ki =

(
h2 + x2

)
+
(
a2 − x2

)
= h2 + a2 = AB2 = 4.
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This holds for every i = 1, 2, · · · , 100. Now, the sum is

k1 + k2 + · · ·+ k100 = 4× 100 = 400.

Answer: 400

20. Inside rectangle ABCD with AB = 1, a semicircle O1 is tangent to side AD and to two other
circles, O2 and O3, as shown in the �gure. Circle O2 is tangent to sides AB and BC, as well
as to circle O3. Circle O3 is tangent to sides BC and AC. Given that AP is the diameter of
semicircle O1, �nd the radius of O2.

O
O

O

1

2

3

A

B C

D

P

Solution: Let x and y denote the radii of circles O1 and O2, respectively. As shown in the

�gure below, at the tangent point Q between circle O2 and
←→
PB, we apply the Pythagorean

theorem to the right triangle with hypotenuse O1O2:

O1Q =
√
(x+ y)2 − y2 =

√
x2 + 2xy,

which leads to:

AB = AO1 +O1Q+QB = x+
√
x2 + 2xy + y = 1.

O

O1

3

A

B C

D

P
Q

R

ST

O2

For the second equation, using the fact that AR is tangent to both circles O1 and O3:

AR = 2
√

AO1 ×RO3 = 2

√
x× 1

2
=
√
2x.

Similarly,

TS = 2
√
O2T ×O3S = 2

√
y × 1

2
=
√

2y.

Thus, we obtain the second equation:

AR = BT + TS ⇒
√
2x = y +

√
2y.
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To solve the system, we rewrite the �rst equation:

x+
√
x2 + 2xy + y = 1 ⇒ x2 + 2xy = (1− x− y)2 ⇒ 2x = (1− y)2.

Substituting into the second equation:

√
2x = y +

√
2y ⇒ 1− y = y +

√
2y ⇒ 4y2 − 6y + 1 = 0.

Since y must be less than 1, we take y =
3−
√
5

4
.

Answer:
3−
√
5

4
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