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1. A point in the plane, both of whose coordinates are integers with absolute value less than
or equal to 4, is chosen at random, with all such points having an equal probability of being
chosen. What is the probability that the distance from the point to the origin is at most 3?

Solution: There are 9 integers in the interval [−4, 4]. Therefore, the total number
of points whose coordinates are integers with absolute value less than or equal to 4 is 81.
A point (x, y) is on distance at most 3 from the origin if and only if x2 + y2 ≤ 9. We
get the following possible (unordered) pairs of absolute values of coordinates (3, 0), (2, 0),
(1, 0), (0, 0), (2, 1), (1, 1), (2, 2). The number of points with these pairs of absolute values of
coordinates are 4, 4, 4, 1, 8, 4, 4, respectively. Therefore, there are 29 points a distance at
most 3 from the origin. It follows that the probability is 29/81.

Answer: 29
81

2. For which values of k ̸= 0 is the line y = kx− 2k tangent to the circle x2 + y2 = 2k2?

Solution: We are asked to find all real k for which the system{
x2 + y2 = 2k2

y = kx− 2k

has a unique solution.
Substituting y = kx − 2k into the first equation, we get x2 + (kx − 2k)2 = 2k2, i.e.,

(k2+1)x2− 4k2x+2k2 = 0. This equation (and thus the system) has unique solution if and
only if its discriminant is equal to zero. The discriminant is equal to 16k4 − 8k2(k2 + 1) =
8k4 − 8k2 = 8k2(k2 − 1).

Answer: k = 1,−1.

3. Find all solutions (x, y, z) of the following system of equations:
x+ y + xy = 19
y + z + yz = 11
z + x+ zx = 14

Solution: Adding 1 to both sides of each equation, and factoring the left-hand side, we
get 

(x+ 1)(y + 1) = 20
(y + 1)(z + 1) = 12
(z + 1)(x+ 1) = 15

Multiplying all equations together, we get (x+1)2(y+1)2(z+1)2 = 3600, hence (x+1)(y+
1)(z + 1) = ±60. Dividing this equation by each of the equations of the last system, we get

z + 1 = ±3
x+ 1 = ±5
y + 1 = ±4
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where the right-hand sides are either all positive or all negative. We get hence two solutions
(4, 3, 2) and (−6,−5,−4).

Answer: (4, 3, 2) and (−6,−5,−4).

4. Sides a, b, c of a triangle satisfy the equality

1

a+ b
+

1

b+ c
=

3

a+ b+ c
.

Find an angle of the triangle (in degrees).

Solution: Adding the fractions, we get

a+ 2b+ c

ab+ ac+ b2 + bc
=

3

a+ b+ c
.

After simplification, we get
b2 = a2 − ac+ c2,

which by the Law of Cosines implies that the angle opposite to the side of length b is equal
to 60◦.

Answer: 60◦

5. Let AK be an angle bisector in triangle △ABC (where K belongs to the side BC). The
center of the circle inscribed in △AKC coincides with the center of the circle circumscribed
around △ABC. Find ∠ACB in degrees.

Solution: Let O be the common center of the circle inscribed in △AKC and the circle
circumscribed around △ABC. Then O is the intersection point of the bisectors of △AKC,
and the segments AO, BO, and CO are equal. Denote ∠KAO = α. Then ∠OAC = α.
Since AO = OC, we have ∠OCA = ∠OAC = α. Since CO is the bisector of ∠ACB, we
have ∠OCB = ∠OCA = α. Since OB = OC, ∠OBC = ∠OCB = α. Since AK is the
bisector of ∠BAC, we have ∠BAK = ∠KAC = 2α, hence ∠BAO = 3α. Since AO = OB,
we have ∠ABO = ∠BAO = 3α.
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We conclude that the angles of △ABC are ∠A = 4α, ∠B = 4α, ∠C = 2α. Their sum
10α is equal to 180◦, hence α = 18◦. Consequently, ∠ACB = 36◦.

Answer: 36◦

6. Find the minimal value of | cosx|+ | cos 2x|.

Solution: Denote | cosx| = t. Then | cosx| + | cos 2x| = t + |2t2 − 1| = f(t), where
0 ≤ t ≤ 1. We have f(t) = −2t2 + t + 1 for 0 ≤ t <

√
2/2, and f(t) = 2t2 + t − 1 for√

2/2 ≤ t ≤ 1.
The polynomial f(t) = −2t2+t+1 is increasing on (−∞, 1/4] and decreasing on [1/4,∞).

Since 0 < 1/4 <
√
2/2, the minimal value of the polynomial on the interval [0,

√
2/2] is

min{f(0), f(
√
2/2)} = min{1,

√
2/2} =

√
2/2.

The polynomial 2t2 + t − 1 is decreasing on (−∞,−1/4] and increasing on [−1/4,∞).
Consequently, it is increasing on the interval [

√
2/2, 1], so its minimal value on this interval

is its value in
√
2/2, which is

√
2/2.

Answer:
√
2
2

= 1√
2
.

7. Three lines parallel to the sides of triangle △ABC are drawn through a point inside
the triangle. They form together with the sides of △ABC three parallelograms and three
triangles. Suppose that the areas of the triangles are 1, 4, and 9. What is the area of
△ABC?

Solution: Let a, b, c be the lengths of the sides of the triangle, and let Sa, Sb, Sc be the
areas of the three triangles adjacent to them, respectively. We will find a general formula
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for the area of △ABC for all triples of areas of the small triangles. Let ha, hb, hc be the
heights of the small triangles from their common vertex to the sides contained in the sides
of lengths a, b, c, respectively. Let Ha, Hb, Hc be the heights of △ABC to the sides of the
corresponding lengths. Let S be the area of △ABC. Then, it follows from similarity of
triangles that h2

a : H2
a = Sa : S, h2

b : H2
b = Sb : S, and h2

c : H2
c = Sc : S. We also have

S = aHa/2 = bHb/2 = cHc/2, and S = (aha + bhb + chc)/2.

Replacing ha, hb, hc by
Ha

√
Sa√
S

, Hb
√
Sb√
S

, Hc
√
Sc√
S

, respectively, we get

S =
1

2
√
S

(
aHa

√
Sa + bHb

√
Sb + cHc

√
Sc

)
=

1√
S

(
S
√

Sa + S
√
Sb + S

√
Sc

)
,

hence
√
S =

√
Sa +

√
Sb +

√
Sc, i.e.,

S =
(√

Sa +
√

Sb +
√
Sc

)2
.

In our case, we get S = (1 + 2 + 3)2 = 36.

Answer: 36.

8. How many pairs (x, y) of integers satisfy the equation

x2(y − 1) + y2(x− 1) = 1.

Solution: We can rewrite the equation as (x + y + 2)(xy − x − y + 2) = 5. It follows
that an integer solution of the equation must be a solution of one of the systems:{

x+ y + 2 = 1
xy − x− y + 2 = 5

{
x+ y + 2 = −1

xy − x− y + 2 = −5{
x+ y + 2 = 5

xy − x− y + 2 = 1

{
x+ y + 2 = −5

xy − x− y + 2 = −1

which are equivalent to {
x+ y = −1

xy = 2

{
x+ y = −3

xy = −10{
x+ y = 3

xy = 2

{
x+ y = −7

xy = −10

It follows that x and y are two roots of one of the following quadratic equations

t2 + t+ 2 = 0, t2 + 3t− 10 = 0, t2 − 3t+ 2 = 0, t2 + 7t− 10 = 0.

Their discriminants are −7, 49, 1, 89, respectively. It follows that x and y are roots either of
the second or of the third equations, hence {x, y} = {−5, 2} or {x, y} = {1, 2}.

Answer: 4 pairs

9. In a square ABCD, let K be the midpoint of the side AB and let L be a point on the
diagonal AC such that the angle ∠KLD is a right angle. Find AL

LC
.
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Solution: Note that a point L such that ∠KLD = 90◦ is an intersection of the circle
with diameter KD and the line AC. One of these intersections is A, so the point L is unique.
Let us prove that if AL

LC
= 3, then ∠KLD = 90◦. By uniqueness of L, this will show that if

∠KLD = 90◦, then AL
LC

= 3.
Let us divide the square ABCD into four congruent squares as on the figure. Then the

point L on AC such that AL
LC

= 3 is the center of the square adjacent to C.

It is easy to see by symmetry that KL = BL and BL = LD. Consequently △KLD is
isosceles. Let a be the length of the side of the square ABCD. Then OD = OC = a

√
2

2
, hence

OL = a
√
2

4
. By Pythagorean theorem for △LOD, we get LD = KL =

√
a2

8
+ a2

2
= a

√
5

2
√
2
. By

Pythagorean theorem for △KAD, we get KD =
√

a2

4
+ a2 = a

√
5

2
.

We have LD
√
2 = KL

√
2 = KD, hence ∠KLD = 90◦.

Answer: 3.

10. Evaluate the integral
∫ π

0

√
1 + cos 2x dx.

Solution: We have
√
1 + cos 2x =

√
2 cos2 x =

√
2 · | cosx|. Therefore,∫ π

0

√
1 + cos 2x dx =

√
2

(∫ π/2

0

cosx dx−
∫ π

π/2

cosx dx

)
= 2

√
2.

Answer: 2
√
2

11. Evaluate the integral
∫ π/2

0

(
cos2(cosx) + sin2(sinx)

)
dx.

Solution: We can transform
∫ π/2

0
sin2(sinx) dx by substitution y = π

2
− x to

−
∫ 0

π/2
sin2(cos y) dy =

∫ π/2

0
sin2(cosx) dx. Consequently, the original integral is equal to∫ π/2

0
cos2(cosx) + sin2(cosx) dx =

∫ π/2

0
1 dx = π

2
.

5



Answer: π
2

12. Let ABCD be a trapezoid, where AD ∥ BC. Suppose that the diagonals AC and BD
are perpendicular, the height of ABCD is equal to 4, and one of the diagonals has length 5.
What is the area of the trapezoid?

Solution: Without loss of generality, let AC = 5. Let CK be the height of the trapezoid.
Then CK = 4, so AK = 3. Let CL be the line parallel to BD, where L is on the line AD.

Then AC is perpendicular to CL, and △ACK is similar to △CLK. Consequently,
KL
CK

= CK
AK

, i.e., KL
4

= 4
3
, hence KL = 16

3
.

Since opposite sides BC and DL of the parallelogram BCLD are equal, the area of the
trapezoid is equal to the area of △ACL, which is equal to 1

2
·CK ·AL = 1

2
· 4 ·
(
3 + 16

3

)
= 50

3
.

Answer: 50
3
= 162

3

13. How many triples of integers satisfy the inequality a2 + b2 + c2 < ab+ 3b+ 2c.

Solution: We can write the inequality as (a− b/2)2 + 3
4
(b− 2)2 + (c− 1)2 < 4, which is

equivalent to (2a− b)2 + 3(b− 2)2 + 4(c− 1)2 < 16.
The solution of a system 

2a− b = t1
b− 2 = t2
c− 1 = t3

where t1, t2, t3 are parameters, is
a = (t1 + t2)/2 + 1
b = t2 + 2
c = t3 + 1

Consequently, the numbers a, b, c are integers if and only if t1, t2, t3 are integers and t1, t2
have the same parity. For each such triple (t1, t2, t3) we will get a unique solution (a, b, c).

Consequently, the number of integer solutions of the original inequality is equal to the
number of integer solutions of the inequality t21 +3t22 +4t23 < 16 such that t1 and t2 have the
same parity. We have t21 ∈ {0, 1, 4, 9}, 3t22 ∈ {0, 3, 12}, and 4t23 ∈ {0, 4}. Taking into account
that t1, t2 are of the same parity, we get the following triples (t21, 3t

2
2, 4t

2
3):

(0, 0, 0), (0, 0, 4), (0, 12, 0), (1, 3, 0), (1, 3, 4), (4, 0, 0), (4, 0, 4), (9, 3, 0).
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The corresponding values of (t1, t2, t3) are

(0, 0, 0), (0, 0,±1), (0,±2, 0), (±1,±1, 0), (±1,±1,±1), (±2, 0, 0), (±2, 0,±1), (±3,±1, 0),

where signs are independent. It follows that the number of triples (a, b, c) satisfying the
original inequality is

1 + 2 + 2 + 4 + 8 + 2 + 4 + 4 = 27.

Answer: 27

14. What is the fifth decimal place of (1.0025)10.

Solution: We have (1.0025)10 = 1+ 10
400

+ 45
4002

+ 120
4003

+ 210
4004

+ 252
4005

+ 210
4006

+ 120
4007

+ 45
4008

+
10

4009
+ 1

40010

We have 210
4004

< 1
4003

, 252
4005

< 1
4004

, 210
4006

< 1
4005

, 120
4007

< 1
4006

, 45
4008

< 1
4007

, 10
4009

< 1
4008

, so

210

4004
+

252

4005
+

210

4006
+

120

4007
+

45

4008
+

10

4009
+

1

40010
<

1

4003
+

1

4004
+

1

4005
+

1

4006
+

1

4007
+

1

4008
+

1

40010

The right-hand side is equal to

1− 1
4006

4002 · 399
+

1

40010
< 10−7.

The first four summands are

1 +
250

104
+

45 · 625
108

+
120 · 15, 625

1012
= 1 + 0.025 + 0.00028125 + 0.000001875 = 1.025283125.

Since the rest of the sum is less than 10−7, it will not change the fifth digit, so it is equal
to 8.

Answer: 8

15. Find all pairs of positive integers x and y such that x(x+ 1)(x+ 7)(x+ 8) = y2.

Solution: The right-hand side is equal to x4 + 16x3 + 71x2 + 56x. It is greater than
(x2 + 8x)2 = x4 + 16x3 + 64x2 and less than (x2 + 8x+ 4)2 = x4 + 16x3 + 72x2 + 64x+ 16.
It follows that y is equal to one of the numbers x2 + 8x+ 1, x2 + 8x+ 2, x2 + 8x+ 3. In the
first case, we have

x4 + 16x3 + 71x2 + 56x = x4 + 16x3 + 66x2 + 16x+ 1,

hence
5x2 + 40x− 1 = 0,

which has no integer roots. In the second case, we have

x4 + 16x3 + 71x2 + 56x = x4 + 16x3 + 68x2 + 32x+ 4,
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hence 3x2 + 24x− 4 = 0, which also has no integer roots. In the third case, we have

x4 + 16x3 + 71x2 + 56x = x4 + 16x3 + 70x2 + 48x+ 9,

i.e., x2+8x−9 = 0, which has roots 1 and−9. If x = 1, then x(x+1)(x+7)(x+8) = 144 = 122.
So, the only positive integer solution is (x, y) = (1, 12).

Answer: (1, 12)

16. Find the maximal value of the product a1a2 · · · an, where positive integers n and a1, a2, . . . , an
are such that a1 + a2 + · · ·+ an = 2024.

Solution: Suppose that a1, a2, . . . , an and n realize the maximal value of a1a2 · · · an.
If ai is even and greater than 4, then we can replace it by ai/2, ai/2 and, having the same

sum, get a greater product, since (ai/2)
2 > ai for ai > 4.

If ai is odd and greater than 3, then we can replace ai by (ai − 1)/2, (ai + 1)/2, and
replace ai in the product by (a2i − 1)/4 > ai.

If one of ai is equal to 1, then we can replace two of numbers ai, aj by aj + 1 and get a
larger product.

Consequently, all numbers ai belong to the set {2, 3, 4}.
Note that 2× 2× 2 < 3× 3, so we can not have more than two instances of 2.
We have 2× 4 < 3× 3, so we can not have 2 and 4 simultaneously.
We have 4× 4 < 3× 3× 2, so we can not have more than one 4.
Consequently, all numbers ai are equal to 3, except for maybe one 4, or one 2, or two 2.

Since 2024 gives remainder 2 when divided by 3, in our case we have all ai equal to 3 except
for one equal to 2. Consequently, the maximal product is 2 · 3674.

Answer: 2 · 3674

17. Given that a, b, c, d, e are real numbers such that{
a+ b+ c+ d+ e = 8,
a2 + b2 + c2 + d2 + e2 = 16,

determine the maximal value of e.

Solution: Using the inequality between the arithmetic and quadratic mean, we get

e2 = 16− (a2 + b2 + c2 + d2) ≤ 16− (a+b+c+d)2

4
= 16− (8−e)2

4
.

Consequently, 5e2 − 16e ≤ 0, hence e ∈ [0, 16/5].
The conditions of the problem are satisfied for a = b = c = d = 6

5
and e = 16

5
, hence the

value 16
5
is achieved, so it is the maximal value of e.

Answer: 16
5
= 3.2.

18. Find all pairs of primes (p, q) such that p+ q = (p− q)3.

Solution: We have (p − q)3 ≡ p − q (mod 3). Consequently, p + q ≡ p − q (mod 3),
hence q is divisible by 3, i.e., q = 3. We get p+ 3 = (p− 3)3, i.e.,

p3 − 9p2 + 26p− 30 = 0.
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One of the roots is p = 5. Dividing the polynomial on the left-hand side by p − 5, we
get p2 − 4p + 6 = 0, which does not have real roots. Consequently, the only solution is
(p, q) = (5, 3).

Answer: (5, 3)

19. It is known that the number S satisfies the following condition: if a+ b+ c+ d = S and
1
a
+ 1

b
+ 1

c
+ 1

d
= S for some numbers a, b, c, d different from 0 and 1, then 1

a−1
+ 1

b−1
+ 1

c−1
+ 1

d−1
=

S. Find S.

Solution: If the conditions a + b + c + d = S and 1
a
+ 1

b
+ 1

c
+ 1

d
= S are satisfied for

(a, b, c, d), then they are satisfied for
(
1
a
, 1
b
, 1
c
, 1
d

)
. So, the conclusion must be also satisfied

for them, i.e., we must have

a

1− a
+

b

1− b
+

c

1− c
+

d

1− d
= S.

Adding this to 1
a−1

+ 1
b−1

+ 1
c−1

+ 1
d−1

= S, we get −4 = 2S, hence S = −2. Note that it is
not required to check if the statement is true for S = −2 (but it is).

Answer: S = −2.

20. Let Tn be the sequence given by T1 = 2 and Tn+1 = T 2
n − Tn + 1. Find

∞∑
n=1

1

Tn

.

Solution: Let us prove by induction that
∑n

k=1
1
Tk

= Tn+1−2
Tn+1−1

.

We have T2 = 4− 2 + 1 = 3 and 1
T1

= 1
2
= 3−2

3−1
.

If the statement is true for n, then

n+1∑
k=1

1

Tk

=
Tn+1 − 2

Tn+1 − 1
+

1

Tn+1

=
T 2
n+1 − 2Tn+1 + Tn+1 − 1

T 2
n+1 − Tn+1

=
T 2
n+1 − Tn+1 − 1

T 2
n+1 − Tn+1

=
Tn+2 − 2

Tn+2 − 1
.

Since we have x2 − x + 1 > 2x for x > 3, the sequence Tn converges to infinity. Conse-

quently,
∞∑
n=1

1

Tn

= 1.

Answer: 1
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