
Stopping the flood: solutions

A landscape in the Square Country is an infinite checkerboard: each
cell is Water, Ground, or Rock.

If the Ground cell is adjacent by side to a Water cell on Day n, then
this cell will be flooded overnight, i.e. it will be a Water cell on Day
n+ 1. Rock cells stay Rock, and Water cells stay Water.

(1) On Day 1, there is only one Water cell and no Rock cells. Find
the formula for the number of Water cells on Day n.

On Day n, the Water cells will occupy the diamond-shaped
region, with the longest row being 2n − 1. The area of such a
diamond-shaped region is 1 + 3 + · · · + (2n − 3) + (2n − 1) +

(2n− 3) + · · ·+ 1. We get 1 + 3 + · · ·+ (2n− 1) = (2n)·n
2

= n2

and (2n−3)+ · · ·+1 = (n−1)2, thus there will be n2+(n−1)2

Water cells on Day n.
(2) Suppose there are no Rock cells. Which configurations are pos-

sible Water configurations on Day 2? Describe a criterion to
distinguish possible configurations from impossible configura-
tions.

We will say that a cell is a Day-1 Water cell if it existed on
Day 1, and a Day-2 Water cell if it was filled with Water on
Day 2.

All possible configurations satisfy the following property:
If a Water cell is adjacent to a Ground cell, then one of

its neighbors is a Water cell that is completely surrounded by
Water

Indeed, all Day-1 Water cells are completely surrounded by
water. Thus all Water cells adjacent to Ground cells are Day-
2 Water cells. They appeared on Day 2 because they were
adjacent to some Day-1 Water cell.

Thus a Water cell that is adjacent to the Ground cell has a
Water neighbor that is completely surrounded by Water.

Prove that if a configuration satisfies this property, then it
is possible. Indeed, on Day 1, put water in all cells that are
completely surrounded by water in our configuration. Then
on Day 2, all cells of our configuration will be filled in: cells
surrounded by water appear on Day 1, cells adjacent to the
Ground will be filled in on Day 2 due to our property. Also,
no extra cells will fill in with water since on Day 1, we do not
put water in the cells that are adjacent to the Ground in our
configuration.

(3) We will say that the flood has stopped on Day k if Water does
not fill any new cells after Day k. Prove that if the flood has
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stopped and Water occupies m2 cells, then there are at least
2m Rock cells in the landscape.
Since Water occupies m2 cells, our configuration of Water

cells either spans at leastm rows, or at leastm columns. Indeed,
if we have at most m−1 columns and m−1 rows, then we have
at most (m− 1)2 cells.
Suppose that our configuration spans at least m rows. In

each row, there must be at least 2 Rock cells: one on the left
end and one on the right end. Otherwise the flood will continue
to the left or to the right.

Thus we have at least 2m Rock cells.

(4) If the flood has stopped and Rock occupies at most N cells,
determine the largest possible number of Water cells. Prove
your answer.
Answer: If N = 4n, we have at most n2 + (n − 1)2 Water

cells; forN = 4n+1, at most 2n2−nWater cells; forN = 4n+2,
at most 2n2 Water cells; for N = 4n+3, at most 2n2+n Water
cells.

For anyN , the maximal number of Water cells equals ⌊N2−4N+8
8

⌋.
Solution: Consider an optimal configuration: the one with

the maximal possible number of Water cells among all config-
urations with at most N Rock cells. If this configuration has
islands (Rock inside Water), we can replace Rocks by Water
and the configuration is not optimal. If we have several lakes,
we can move the lakes closer together without changing their
shapes until they are next to each other (i.e. share the interval
on the boundary). This removes some Rock cells and does not
change the number of Water cells, and also unites several lakes
into one. Below we will assume that our configuration is one
lake without islands. In other words, the shoreline is a single
polygonal line with angles 90◦, 180◦, and 270◦.

Walking along the shoreline and keeping Water on your right,
we will write down our moves as Right, Left, Up, or Down; R,
L, U, D for short. Clearly, the sequence cannot contain UD,
DU, RL, LR.

No straight segments of length 3.
If the sequence contains RRR, it can be improved as shown

below (replaced by RURDR) which increases the number of
Water cells by 1 and does not change the number of Rock
cells. Similar transformation works for UUU, DDD, LLL. Hence
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these combinations do not appear for the optimal configuration.

No backtracking.
If the shoreline contains RUL, this can be replaced with U.

The number of Water cells increases by 1 while the number of
Rock cells does not change. Similarly, RUUL can be replaced
with UU, thus RUL and RUUL cannot appear for the optimal
configuration.

Roughly rectangular-shaped shoreline.
Assume without loss of generality that the sequence starts

with RU, followed by a certain amount of R and U. We will call
this an RU-piece of the shoreline.

Due to the above, the only way this RU-piece may end is
URD or URRD, since RUL and RUUL is impossible, and UUU
or RRR are also impossible.

Then, there will be a certain amount of R, D; we will call this
an RD-piece of a shoreline. Due to similar arguments, the only
way the RD-piece may end is either RDL or RDDL.

Proceeding in a similar way, we will split the shoreline into
four pieces: RU-, RD-, LD-, and LU-piece; after that we come
back to the initial RU-piece. Formally speaking, we may have
8, 12, or more pieces (RU-RD-LD-LU-RU-RD-LD-LU etc) in
the shoreline. However, since the shoreline may only make one
turn around the lake, and every four pieces (RU-RD-LD-LU)
constitute a 360-degree turn in a clockwise direction, we will
only have four pieces of this form.

Sides of rectangles are diagonal.
Take the RU piece. Recall that we cannot have three letters

in a row (RRR or UUU).
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If the shoreline contains RRUR, we can increase the number
of Water cells and keep same the number of Rock cells by re-
placing it with RURR. Thus the letter repetition RR can only
appear at the end of the RU piece in the optimal configuration.
Similarly, the repetition UU may only appear in the beginning.
Analogous arguments apply to RD, LD, and LU pieces.

Figure 1. Case (1): n = m and m = n+ 1 for n = 2

Analyzing rectangles with diagonal sides.
We have obtained the following possible shapes of the optimal

shoreline. All these shapes look like rectangles with four ladder-
shaped sides: namely RU, RD, DL, LU sides. The sequence of
n pairs RU will be denoted (RU)n. We have the following cases.
(1) No letter repetitions:

U(RU)n−1R(DR)m−1D(LD)k−1L(UL)l−1.

Since the number of U and D, as well as the number of R and
L, must be the same, we have n+ l = m+ k and n+m = k+ l
and thus n = k and m = l.
If m = n (diamond-shaped configuration), we have 4n Rock

cells and n2 + (n− 1)2 Water cells, see problem (1).
If m = n + 1, we can take all the Rock cells that are adja-

cent to the piece D(LD)n−1L(UL)m−1 (the bottom half of the
picture) and move them left. This does not change the number
of Water cells, but reduces this case to case (2) below.

If m − n ≥ 2, this shape is not optimal, since the same
movement of Rock cells will add m−n− 1 > 0 Water cells and
will not change the number of Rock cells.

The case m < n is symmetric.

Note that one letter repetition, e.g.

U(RU)n−1RR(DR)m−1D(LD)k−1L(UL)l−1,
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cannot happen: since the number of U and D, as well as the
number of R and L, must be the same, we have n+ l = m+ k
and n + m + 1 = k + l, which is impossible since the sum of
left-hand sides has different parity than the sum of right-hand
sides.

Three letter repetitions, e.g.

U(RU)n−1RR(DR)m−1DD(LD)k−1LL(UL)l−1,

are impossible due to similar arguments. Thus we have the
following three cases, modulo rotation of the shape by 90◦ or
180◦:

(3) Two letter repetitions, on top and bottom:

U(RU)n−1RR(DR)m−1D(LD)n−1LL(UL)m−1.

Figure 2. Case (2): m = n and m = n+ 1, for n = 2

If m = n, we have 4n + 2 Rock cells and 2 + 4 + · · · + 2n +
· · ·+ 4 + 2 = 2n2 Water cells.
If m = n+ 1, again, we can move all the Rock cells that are

adjacent to the piece D(LD)n−1LL(LU)m−1 (the bottom half of
the picture) and move them left; this reduces the case to Case
(3).

If m > n+1, this configuration is not optimal since the same
movement of Rock cells will add m−n− 1 > 0 Water cells and
will not change the number of Rock cells.

Similar arguments apply if m < n, and if we have repetitions
UU, DD instead of RR, LL.

(3) Two letter repetitions on top and right of the shoreline:

U(RU)n−1RR(DR)m−1DD(LD)n−1L(UL)m.

If m = n− 1, we have 4n+ 1 Rock cells and (2 + · · ·+ (2n−
2)) + ((2n− 1) + · · ·+ 1) = 2n2 − n Water cells.

If m = n, we have 4n + 3 Rock cells and (2 + · · · + 2n) +
((2n− 1) + · · ·+ 1) = n(n+ 1) + n2 = 2n2 + n Water cells.
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Figure 3. Case (3): m = n− 1 and m = n, for n = 2

Ifm ≥ n+1, we can move the Rock cells adjacent toD(LD)n−1L(UL)m
to the left, increasing the number of Water cells by m − n.
Similarly, if m ≤ n − 2, we can move the Rock cells adjacent
to D(LD)n−1L(UL)mU to the right, increasing the number of
Water cells by n −m − 1. So in these cases, the configuration
is not optimal.

(4) Four repetitions RR, UU, DD, LL on all edges of the
shoreline:

UU(RU)n−1RR(DR)m−1DD(LD)n−1LL(UL)m−1.

If m = n, we have 4n+ 4 Rock cells and (2 + 4+ · · ·+ 2n) +
(2n + · · · + 2) = 2n(n + 1) Water cells. Since we would get
(n+1)2+n2 > 2n(n+1) Water cells with the diamond-shaped
configuration of Case (1), this configuration is not optimal.

If m = n + 1, we have 4n + 6 Rock cells and 2 + · · · + 2n +
(2n + 1) + 2n + · · · + 2 = 2n2 + 4n + 1 Water cells. Since we
would get 2(n+1)2 > 2n2 +4n+1 Water cells in case (2), this
configuration is not optimal.

If m − n ≥ 2, this shape is not optimal, the same motion of
Rock cells as above will increase the number of Water cells by
m− n− 1.

We conclude that:
• for 4n Rock cells, we have at most n2 + (n − 1)2 = 2n2 −
2n+ 1 Water cells;

• for 4n+1 Rock cells, we have at most 2n2−n Water cells;
• for 4n+ 2 Rock cells, we have at most 2n2 Water cells;
• for 4n+3 Rock cells, we have at most 2n2+n Water cells.

This implies the answer.
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Figure 4. Case (4): m = n and m = n+ 1, for n = 2

(5) On Day 1, there are no Rock cells, and there are four Water
cells forming a 2x2 square. On Day 1 and every day after that,
after Water fills new cells, you are allowed to replace 3 Ground
cells with Rock cells (note that you cannot put Rocks in Water).
Show how you can stop the flood.

Solution.
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Figure 5. Task 5: Stopping the flood in six days

(6) On Day 1, there is an infinite horizontal row of Rock cells. Right
above them, there is a row of adjacent n Water cells. On Day
1 and on every subsequent day, after Water fills new cells, you
are allowed to replace k Ground cells with Rock cells. Stop the
flood for (a) k = 3; (b) k = 2.

(a) On Day 1, place two Rock cells adjacent to the leftmost
water cell. Place one Rock cell to the right of the rightmost
Water cell. On Day 2, Water will fill n − 1 cells on Row 2.
Also, Row 1 of water is blocked.
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Figure 6. Stopping the flood in a half-plane, k = 3
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Figure 7. Stopping the flood in a half-plane, k = 2

On each of the next days, we will have a similar picture: a
line of water of length n − k on Row k + 1, blocked on one
side. Each day, we will put 2 rock cells adjacent to the open
end of the water line (third rock cell is not needed). This will
block Row k + 1; next day, the water will fill n − k − 1 cells
on Row k + 2, and this line will again be blocked on one side.
Proceeding in this way, we will stop the flood in n days.

(b) On Day 1, place two Rock cells adjacent to the leftmost
water cell. On Day 2, the Water will fill one cell in row 1 (near
the right end) and n − 1 new cells in row 2. Place two Rock
cells adjacent to the rightmost water cell. On Day 3, the water
will fill n− 1 cells on Row 3.

Now, we have the same configuration in Row 3 as in the
beginning, but with n − 1 cells instead of n. Rows 1 and 2
of Water are blocked. Proceeding in the same way for Row 3
instead of Row 1, we will stop the flood in 2n days.

(7) On Day 1, there are no Rock cells, and finitely manyWater cells.
Again, on Day 1 and on every subsequent day, after Water fills
new cells, you are allowed to replace k Ground cells with Rock
cells. For any initial configuration of Water cells, prove that
you can stop the flood for (a) k=9; (b) k=5; (c*) k=4; (d*)
k=3.
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Figure 8. Stopping the flood, k = 4

(a) Suppose that initial configuration of Water fits in a n×n
square. Then on Day N , the water will fit into a (2N + n) ×
(2N+n) square. We can surround it completely with 4(2N+n)
Rock cells.

Select N so that 4(2N + n) < 9N . Determine the shape
of this square for that N , and start putting the rock cells to
form a fence along its perimeter. We will complete this fence
in at most N days, since we are placing 9 cells at a time and
4(2N + n) < 9N . So when the water reaches the boundary of
(2N + n)× (2N + n) square on Day N , the fence is ready and
the flood will stop once the water fills the interior of this square.

(b) Suppose that initial configuration of Water fits in the
same diamond shape as is Task 1. We will call it a diamond Dn

if it has 2n + 1 cells on its longest row. Then on Day N , the
water will fit into DN+n. We can surround it completely with
2(2(N + n) + 1) + 2 Rock cells (these are 2 rock cells per row,
plus 2 on top and bottom).

Select N so that 2(2(N+n)+1)+2 < 5N , and build the fence
in the same way as in (a) along DN+n. In N days, the fence
will be ready and the Water will be confined to the diamond
DN+n.



10

W1

W1

W1

W1

W1

W1

W1

W1

W1

W1

W1

W1

W1

W1

W1

W1

W1

W2

W2

W2

W2

W2

W2

W2

W2

W2

W2

W2

W2

W2

W2

W2

W2

W3

W3

W3

W3

W3

W3

W3

W3

W3

W3

W3

W3

W3

W3

W3

R1

R1

R1

R2

R2 R2

Figure 9. Stopping the flood, k = 3

(c) Let Dn be the diamond shape that contains the initial
water configuration. Select N such that 3(N+n)+3 < 4N and
build the fence along three sides of DN+n.

On Day N , the water will reach the fence, and three of its
sides will be complete since they contain 3(N+n)+3 cells. The
water will continue to spill through the fourth side.

On each of the subsequent days, Water cells that are adjacent
to Ground will form a ladder. By placing two cells on the
bottom of the ladder and two on top (see the picture), we reduce
the length of this ladder by 2 on each step. Thus the flood will
stop in finitely many days.

(d)* Let Dn be the diamond shape that contains the ini-
tial water configuration. We will assume that the initial wa-
ter configuration is exactly Dn (if it is smaller, the same al-
gorithm works but we have less Water). Select N such that
2(N + n) + 3 < 2N and build the fence along two bottom sides
of DN+n.

When the water reaches the fence, two of its bottom sides are
ready. In the next two days, we put 6 cells near the left and
the right of the diamond as shown. Now, we are in the same
situation as before, with half-a-diamond shape of water still
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spilling; but the size of the half-a-diamond shape is 1 smaller
than before. Thus we can proceed in the same way until we
stop the flood.
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