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1. Find the minimal value of
√

x2 + (1− y)2+
√

(1− x)2 + y2, where x, y are real numbers.

The distance from (x, y) to (0, 1) is equal to
√
x2 + (1− y)2. The distance from (x, y) to

(1, 0) is equal to
√

(1− x)2 + y2. Therefore, the minimal value of this sum is the distance
from (1, 0) to (0, 1).
Answer:

√
2.

2. In△ABC the median from A is perpendicular to the median from B. Find AB if BC = 7
and AC = 6.

Let AA1 and BB1 be the medians, and let D be the point of their intersection. Denote
DA1 = x and DB1 = y. Then AD = 2x and BD = 2y. Pythagorean theorem for △BDA1

and △ADB1 gives us {
x2 + 4y2 = 72

22

4x2 + y2 = 32

Which gives x2 + y2 = 1
5

(
49
4
+ 9

)
= 17

4
. Pythagorean theorem for △ABD gives AB2 =

4x2 + 4y2 = 17.

Answer:
√
17.

3. Two particles move along the edges of equilateral △ABC in the direction A→ B → C →
A starting simultaneously and moving at the same speed. One starts at A, and the other
starts at the midpoint of BC. The midpoint of the line segment joining the two particles
traces out a path that encloses a region R. What is the ratio of the area of R to the area of
△ABC?

It is clear that the midpoint traces a straight line (i.e., has constant velocity) when both
particles trace straight lines (have constant velocity). If one particle is in a vertex of the
triangle, then the other particle is in the middle of the opposite side. It follows that the
region R is the triangle with the vertices equal to the midpoints of the medians of △ABC.
The point of intersection of the medians divides them in proportion 1 : 2. Consequently,
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the distance from the point of intersection of the median to the vertices of the triangle R is
1/2−1/3 = 1/6 of the median. The distance from the intersection of the medians to a vertex
of △ABC is 2/3 of the median. It follows that R is obtained from △ABC by similarity with

the coefficient 1/6
2/3

= 1
4
. Hence the ratio of the area of R to the area of △ABC is 1

16
.

Answer: 1/16.

4. A standard 8 × 8 chess board is rotated around its center by 45◦. Find the area of the
set of the points of the plane which belonged to black squares in both the original and the
rotation positions of the board, if the side of the board length 1ft.

Let us denote by XY , where X and Y are letters B or W (standing for “black” and
“white”, respectively), the area of the set of points which are in a square of color X in the
original board and color Y in the rotated board.

If we rotate one of the boards by 90◦, then the colors of the squares will change to the
opposite ones. It follows that BB = WB, BW = WW , WB = WW , and BB = BW .
Hence BB = WB = WW = BW . Consequently, BB is equal to one quarter of the area of
intersection of two boards.

The part of a board that does not belong to the intersection consists of isosceles right

triangles with height
√
2
2
− 1

2
. Hence, the area of each of these triangles is

(√
2−1
2

)2

= 3−2
√
2

4
.

Consequently, the area of the intersection is 1− (3− 2
√
2) = 2

√
2− 2. It follows that the

answer is
√
2−1
2

.

Answer:
√
2−1
2

ft2.

5. Let ⌊x⌋ denote the largest integer not larger than x, and let {x} = x − ⌊x⌋. Find the
number of real solutions of the equation

⌊x⌋ · {x}+ x = 2{x}+ 10.

Denote ⌊x⌋ = n and {x} = α. We have

nα + n+ α = 2α + 10,
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which is equivalent to (n − 1)α = 10 − n. Since 0 ≤ α, the equality implies that n > 1.
Hence, (n− 1)α is non-negative, so n ≤ 10.

Since 0 ≤ α < 1, we have n =
α + 10

1 + α
= 1 +

9

1 + α
> 1 + 9

2
, so n ≥ 6.

Checking n ∈ {6, 7, 8, 9, 10}, we see that the solutions are x = n + 10−n
n−1

for n ∈
{6, 7, 8, 9, 10}.
Answer: 5.

6. Find all two-digit decimal numbers xy such that their square is equal to the cube of the
sum of its digits (i.e., to (x+ y)3).

The equality (10x+ y)2 = (x+ y)3 implies that x+ y is a full square. It also implies that
x + y and (x + y)2 give the same residue when divided by 3. Consequently, the residue of
x+ y modulo 3 is either 0 or 1. It follows that x+ y is one of the numbers 4, 9, 16. We have
10x+ y = (x+ y)3/2, and 43/2 = 8, 93/2 = 27, 163/2 = 64. Out of these three numbers, only
27 satisfies the condition of the problem.
Answer: 27.

7. Let △ABC be such that the angle ∠ACB is right, and the radius of the inscribed circle
of △ABC is 1. Let CD be the height of △ABC. Suppose that the bisector of ∠ABC
intersects the bisector of ∠BCD in E, and that the bisector of ∠BAC intersects the bisector
of ∠ACD in F . Find EF .

The points E and F are the centers of the inscribed circles in △BCD and △ACD,
respectively. Suppose that r1, r2 are their radii. Since DE and DF are bisectors of ∠CDB
and ∠ADC, respectively, ∠EDF is right. The segments ED and EF have lengths r1

√
2

and r2
√
2. Consequently, EF =

√
2(r21 + r22).

Since △ABC, △ACD, and △CBD are similar, there exists k such that their areas are
kr2, kr21, and kr22, respectively, where r is the radius of the inscribed circle in △ABC. It
follows that r2 = r21 + r22. Consequently, EF =

√
2r =

√
2.

Answer:
√
2

8. Three lines ℓ1, ℓ2, ℓ3 are parallel to the sides of △ABC and intersect in one point in its
interior. All three segments of ℓi formed by the two intersection points of ℓi with the sides
of △ABC have the same length x. Find x if the lengths of the sides of △ABC are 2, 3, 4.

Let D be the intersection point of the lines ℓi, and let A1, A2, B2, B3, C1, C3 be the inter-

sections of the lines with the sides of the triangle so that ℓ1 =
←−→
A1C1, ℓ2 =

←−→
A2B2, ℓ3 =

←−→
B3C3,

as it is shown on the figure.
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Let a = BC, b = AC, c = AB. Since BB2DB3, CC3DC1, and AA2DA1 are paral-
lelograms, their opposite sides are congruent, hence C1B2 = a − x, A2C3 = b − x, and
A1B3 = c− x. Since △ABC and △A2B2C are similar,

CB2

CB
=

A2B2

AB
,

i.e.,

CB2 =
CB · A2B2

AB
=

ax

c
.

Consequently, BB2 = a− ax
c
. Similarly, CC1 = a− ax

b
. We have a = BC = BB2 + B2C1 +

C1C = a− ax
c
+ a− x+ a− ax

b
, hence

ax

c
+

ax

b
+ x = 2a,

i.e.,
x

a
+

x

b
+

x

c
= 2.

Consequently, x = 2
1/a+1/b+1/c

= 2
1/2+1/3+1/4

= 24
13
.

Answer: 24
13

= 111
13
.

9. For a positive integer n, let S(n) denote the sum of decimal digits of n. Find the number
of solutions of the equation n+ S(n) + S(S(n)) = 2025.

The residues of S(n) and n modulo 3 are equal, the same is true for S(n) and S(S(n)).
Since 2025 is divisible by 9, this implies that n is divisible by 3. We have S(n) ≤ 1+9+9+9 =
28, so S(S(n)) ≤ 10. Consequently, n ≥ 2025 − 28 − 10 = 1987. We also have n < 2025.
Numbers divisible by 3 in this interval, the corresponding values of S(n) and S(S(n)), and
the sum n+ S(n) + S(S(n)) are

1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 2022
27 21 24 27 3 6 9 3 6 9 12 6
9 3 6 9 3 6 9 3 6 9 3 6

2025 2016 2025 2034 2007 2016 2025 2016 2025 2034 2034 2034
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Answer: 4.

10. How many numbers α exist such that 0 ≤ α < 2π and all numbers

cosα, cos 2α, cos 4α, . . . , cos 2nα, . . .

are negative?

Let us write the number α
2π

in the binary numeration system .a1a2 . . .. The set of values of
α
2π

for which cosα is negative is equal to the interval (1/4, 3/4), which is the set of numbers
which can not be of the form .00a3 . . . or .11a3 . . .. Since the binary expansion of 2nα

2π
is

.an+1an+2 . . ., it follows that the set of angles α such that cos 2nα < 0 for all n is equal to the
set of angles α such that in the binary expansion .a1a2 . . . of

α
2π

there are no two consecutive
equal digits. Consequently, there are only two such numbers, corresponding to the binary
fractions .010101 . . . and .101010 . . ., which are α = 2π

3
and α = 4π

3
.

Answer: 2.

11. Evaluate
∫ π

0
(| sin 2025x| − | sin 2026x|) dx.

Since sin(α + π) = − sinα, the function | sinα| is periodic with period π. Consequently,

| sin kx| is periodic with period π/k, hence
∫ π

0
| sin kx| dx = k

∫ π/k

0
sin kx dx =

∫ π

0
sin y dy =

2, where y = x/k.
Answer: 0.

12. Denote by an the integer closest to
√
n. Find

2025∑
n=1

1

an
.

We have an = k if and only if k− 1
2
<
√
n < k+ 1

2
(the equalities can not hold, since

√
n

is either an integer or is irrational). These inequalities are equivalent to

k2 − k +
1

4
< n < k2 + k +

1

4

and to
k2 − k + 1 ≤ n ≤ k2 + k.

Denote bk = k2 + k = k(k + 1). Then the set of values of n such that an = k is the
interval [bk−1 + 1, bk] ∩ N.

The sum of the values of 1
an

on the interval [bk−1+1, bk] is equal to
bk−bk−1

k
= k(k+1)−k(k−1)

k
=

2. We have a2025 = 45, and 2025 ∈ [b44 + 1, b45] = [1981, 2070].

It follows that
2025∑
n=1

1

an
= 2× 44 + 2025−1981+1

45
= 88 + 45

45
= 89.

Answer: 89.

13. In△ABC, we have ∠A = 40◦,∠B = ∠C. Point D on the side AB is such that BC
AD

=
√
3.

Find ∠DCB in degrees.

Let us construct triangles △ACC1 and △AC1B1 congruent to △ABC, as it is shown on
the figure.
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Let D1 be a point on AB1 such that
←−→
DD1 is parallel to

←−→
CC1. Then ∠BAB1 = 120◦, and

∠ADD1 = ∠AD1D = 30◦. Consequently, DD1

AD
=
√
3, which implies thatDD1 = BC = CC1.

Since the perpendicular from A to the segments DD1 and to CC1 intersect them in their
midpoints, this implies that DD1C1C is a rectangle. It follows that ∠DCB = 140◦ − 90◦ =
50◦.
Answer: 50◦.

14. Find all odd non-prime numbers n such that (n− 1)! is not divisible by n2.

If (n−1)! is not divisible by n2, then there exists a prime p dividing n such that if pk is the
largest power of p dividing n, then the largest power of p dividing (n−1)! is less than 2k. Since
n is odd and not prime, we have either pk ≤ n/3 or pk = n. In the first case, pk, 2pk ≤ n− 1,
so (n−1)! is divisible by p2k, which is a contradiction. In the second case, the maximal power

of p dividing (pk−1)! is
⌊
pk−1
p

⌋
+
⌊
pk−1
p2

⌋
+ · · ·+

⌊
pk−1
pk−1

⌋
= (pk−1−1)+(pk−2−1)+ · · ·+(p−1).

We have k ≥ 2. If p > 3, i.e., p ≥ 5, then the above sum is not less than 4+24(k−2) ≥ 2k.
It follows that p = 3. If k ≥ 3, then the sum is not less than 2 + 8+ 26(k− 3) ≥ 2k. Hence,
the only possibility is n = 32 = 9. It is easy to see that 8! is not divisible by 92.
Answer: 9.

15. Let y = ax + b be the line tangent to the graph of y = x(x − 1)(x − 2)(x − 4) in two
points. Find a.

If the line y = ax+b is tangent to the graph in two points, then x(x−1)(x−2)(x−4)−ax−b
is a square of a quadratic polynomial (since it will have two double roots). Therefore, there
exist real numbers p, q such that

x(x− 1)(x− 2)(x− 4)− ax− b = (x2 + px+ q)2,

hence
x4 − 7x3 + 14x2 − (8 + a)x− b = x4 + 2px3 + (p2 + 2q)x2 + 2pqx+ q2.

Which takes place if and only if

2p = −7, p2 + 2q = 14, 8 + a = −2pq, b = −q2.
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The first two equalities imply that p = −7
2
, and q = 1

2

(
14− 49

4

)
= 7

8
. The third equation

gives:

a = −2pq − 8 =
49

8
− 8 = −15

8
.

Answer: −15
8
= −17

8
= −1.875.

16. Consider the function f(x) = |4−4|x||−2. Find the number of solutions of the equation

f(f(x)) = x.

A number x is a solution of the equation f(f(x)) = x if and only if there exists y such
that both (x, y) and (y, x) belong to the graph of the function f(x). It follows that the
number of solutions is equal to the number of intersections of the graphs of y = |4−4|x||−2
and x = |4− 4|y|| − 2.

Answer: 16.

17. Find x from the system

x− y
√

x2 − y2√
1− x2 + y2

= 1,
y − x

√
x2 − y2√

1− x2 + y2
=

1√
2
.

We have
(x− y

√
x2 − y2)2

1− x2 + y2
= 1,

(y − x
√
x2 − y2)2

1− x2 + y2
=

1

2

x2 − 2xy
√

x2 − y2 + x2y2 − y4

1− x2 + y2
= 1,

y2 − 2xy
√

x2 − y2 + x4 − x2y2

1− x2 + y2
=

1

2
.
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Subtracting the second equation from the first, we get

1

2
=

x2 − y2 − x4 + 2x2y2 − y4

1− x2 + y2
=

x2 − y2 − (x2 − y2)2

1− x2 + y2
=

(x2 − y2)(1− (x2 − y2))

1− x2 + y2
= x2−y2.

Substituting this result into the original equations, we get

x− y · 1√
2

1/
√
2

= 1,
y − x · 1√

2

1/
√
2

=
1√
2
,

i.e., the system {
x
√
2 − y = 1

−x + y
√
2 = 1/

√
2.

Multiplying the first equation by
√
2, and adding the result to the second equation, we get

x =
√
2 +

1√
2
.

Answer:
√
2 + 1√

2
= 3√

2
= 3

√
2

2
.

18. Positive real numbers x, y satisfy x2 + y2 + 1
x2+2x

+ 1
y2+2y

= 2. Find x+ y.

Let us show that x2 + 1
x2+2x

≥ 1 for all positive x. It is enough to show that x2(x2 +
2x) + 1 ≥ x2 + 2x for all x. But this follows from the equality

x4 + 2x3 − x2 − 2x+ 1 = (x2 + x− 1)2.

It also follows that we have x2 + 1
x2+2x

= 1 for a positive x if and only if x is a positive

root of x2 + x− 1, i.e., if and only if x =
√
5−1
2

.

Consequently, x2+y2+ 1
x2+2x

+ 1
y2+2y

= 2 for positive x and y if and only if x = y =
√
5−1
2

.

Answer: x+ y =
√
5− 1.

19. Let a < b < c be the roots of x3 − 3x+ 1 = 0. Find a2 − c.

If a is a root of x3 − 3x+ 1, then we have

(a2 − 2)3 − 3(a2 − 2) + 1 = a6 − 6a4 + 9a2 − 1 = (a3 − 3a+ 1)2 − 2(a3 − 3a− 1) = 0.

It follows that if a is a root of the polynomial x3 − 3x + 1, then a2 − 2 is also its root,
i.e., a2− 2 ∈ {a, b, c}. We can not have a2− 2 = a, since the roots of a2− a− 2 are 1±3

2
, and

are not roots of x3 − 3x+ 1.
The local extrema of the function x3 − 3x+ 1 are the roots of 3x2 − 3, i.e., −1 and 1. It

follows that the function is increasing on (−∞,−1], decreasing on [−1, 1], and increasing on
[1,∞). In particular, a ∈ (−∞,−1), b ∈ (−1, 1), and c ∈ (1,∞).

We have (−
√
3)3 − 3(−

√
3) + 1 = 1 > 0, hence a ∈ (−∞,−

√
3). The function x2 − 2 is

decreasing on (−∞, 0). It follows that a2 − 2 > (−
√
3)2 − 2 = 1. Therefore, a2 − 2 = c. It

follows that a2 − c = 2.
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Answer: 2.

20. A cube with side of length 5 is partitioned into 53 little cubes with sides of length 1. We
choose k little cubes, and draw three lines through the center of each chosen cube parallel
to its edges. What is the smallest number k for which we can choose the little cubes in such
a way that the lines intersect all 53 little cubes?

Consider the bottom 5×5 square of the cube. Let us write in each of its 25 little squares
the number of chosen cubes above it. Suppose that some square, call it S, has 0 written in it.
Since each of the cubes above S must be intersected by a line passing through a chosen cube,
the sum of numbers written in the “cross” formed by the row and the column containing S
must be at least 5.

Consider the 10 sums of numbers written in rows and columns of the square, and choose
the smallest number m out of them. Without loss of generality, let us assume that m is the
sum of numbers in the first row of the square. Suppose that m < 5. Then the first row has
at least 5−m zeros, and the sum of numbers in each column containing one of these zeros
is at least 5−m, by the proven in the previous paragraph. The sum of numbers in each of
the other columns is at least m. It follows that the sum of all numbers in the square is at
least (5 −m)2 +m2 ≥ 52/2, hence (5 −m)2 +m2 ≥ 13. If m ≥ 5, then the total sum is at
least 25.

Consequently, the number of chosen cubes must be at least 13. We can choose 13 cubes,
for example, in the following way:

4 3 5
3 5 3
5 4 3

1 2
2 1

where the numbers show in which layer we choose a cube above the corresponding square.
Empty cells do not have chosen cubes above them.
Answer: 13.
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