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1. A rectangle has perimeter 17 and area 15. Find the length of the diagonal of this rectangle.

Answer:
13

2
= 6.5.

Let a and b be lengths of two adjacent sides of the rectangle. Then the rectangle has perimeter
2(a+ b) and area ab, and its diagonals have length

√
a2 + b2. We are given that 2(a+ b) = 17 and

ab = 15. It follows that b = 15/a and 2(a+ 15/a) = 17. Likewise, 2(b+ 15/b) = 17. Hence a and b
are solutions of the equation 2(x+ 15/x) = 17. This equation is equivalent to a quadratic equation
2x2 − 17x+ 30 = 0, which has solutions 5/2 and 6. Note that (5/2)2 ̸= 15 and 62 ̸= 15. Hence one
of the lengths a and b is 5/2 and the other is 6. Then the diagonals of the rectangle have length√
(5/2)2 + 62 =

√
169/4 = 13/2.

2. Let f be a one-to-one differentiable function and let g denote its inverse. Find h′(3) if h(x) = x2g(x),
f(2) = 3, and f ′(2) = 7.

Answer:
93

7

Solution: By the Product Rule we get

h′(x) = 2xg(x) + x2g′(x) ⇒ h′(3) = 6g(3) + 9g′(3).

Since f(2) = 3 and f ′(2) = 7, we have that g(3) = 2 and

g′(3) =
1

f ′(g(3))
=

1

f ′(2)
=

1

7
.

Therefore, h′(3) = 12 +
9

7
=

93

7
.

3. The expression
(
x+ 1+

1

x

)4
can be expanded as a sum

4∑
k=−4

ckx
k, where each ck is a real number.

Find the constant term c0.

Answer: 19.

The expanded expression is the sum of 34 = 81 products of the form y1y2y3y4, where each of the

factors yi can be chosen to be either x or 1 or
1

x
. Every product is equal to xk for some integer k.

Hence c0 counts the number of choices when the product y1y2y3y4 equals 1. We have three different
ways to arrange this. First we can choose all four factors to be 1. Secondly, we can choose one of

the four factors to be x, one of the remaining three factors to be
1

x
, and the other two factors to



be 1. There are 4 · 3 = 12 different choices here. Finally, we can choose two of the four factors to

be x and the other two factors to be
1

x
. There are

(
4

2

)
=

4 · 3
2!

= 6 different choices here. Thus

c0 = 1 + 12 + 6 = 19.

4. Find a real solution x of the equation

√
x
√
x
√
x = 8

√
2.

Answer: 16.

Clearly, any real solution should be nonnegative. For any x ≥ 0 we obtain
√
x = x1/2,

x
√
x = x · x1/2 = x3/2,√

x
√
x =

(
x3/2

)1/2
= x3/4,

x

√
x
√
x = x · x3/4 = x7/4,√

x

√
x
√
x =

(
x7/4

)1/2
= x7/8.

Hence the given equation is equivalent to x7/8 = 8
√
2. We observe that

8
√
2 = 23 · 21/2 = 27/2 =

(
24
)7/8

= 167/8.

Since the function f(x) = x7/8 is strictly increasing on the interval [0,∞), it follows that x = 16 is
the only real solution of the equation.

5. Find the limit of the sequence an = sin2(π
√
n2 + n+ 1).

Answer: 1

Solution: We have

lim
n→∞

sin2(π
√
n2 + n+ 1) = lim

n→∞
[sin(π

√
n2 + n+ 1− nπ + nπ)]2

= lim
n→∞

[(−1)n sin(π
√

n2 + n+ 1− nπ)]2 = lim
n→∞

[
sin

(
π
n2 + n+ 1− n2

√
n2 + n+ 1 + n

)]2
= sin2

π

2
= 1.

6. A polynomial f(x) = x5 − 2x4 + ax2 + bx, where a and b are unknown coefficients, is divisible by
x2 − 3x+ 2. Find ab.

Answer: −2.

The polynomial x2 − 3x+2 has roots 1 and 2. Since the polynomial f(x) is divisible by it, we have
f(x) = (x2 − 3x + 2)q(x) for some polynomial q(x). It follows that 1 and 2 are also roots of f(x).
The equalities f(1) = f(2) = 0 give rise to a system of linear equations in variables a and b:{
−1 + a+ b = 0

4a+ 2b = 0
⇐⇒ begincasesa+b = 1b = −2acases ⇐⇒ begincases−a = 1b = −2acases ⇐⇒ begincasesa = −1b = 2cases



Thus ab = −1 · 2 = −2.

7. Evaluate lim
n→∞

(
4

3

n∑
k=1

1

k(k + 2)

)n

.

Answer: e−
4
3

Solution: We first see that
1

k(k + 2)
=

1

2k
− 1

2(k + 2)

for every positive integer k, which implies that the sequence {xn}, where

xn =

n∑
k=1

1

k(k + 2)
=

1

2
+

1

4
− 1

2(n+ 1)
− 1

2(n+ 2)

has limit
3

4
. Our limit then becomes

lim
n→∞

(
4

3
xn

)n

= lim
n→∞

(
1 +

4

3
xn − 1

)n

= e−
4
3 ,

since lim
x→0

(1 + x)
a
x = ea, lim

n→∞

4

3
xn − 1 = 0, and

lim
n→∞

n

(
4

3
xn − 1

)
= lim

n→∞
n

(
− 2

3(n+ 1)
− 2

3(n+ 2)

)
= −4

3
.

8. Let f be a continuous function such that

∫ 1

−1
f(x2)dx = 2025. Find I =

∫ 1

−1

f(x2)

5x + 1
dx.

Answer:
2025

2

Solution: We make the substitution u = −x and we get

I = −
∫ −1

1

f(u2)

5−u + 1
du =

∫ 1

−1

5uf(u2)

5u + 1
du

=

∫ 1

−1

(5u + 1)f(u2)

5u + 1
du−

∫ 1

−1

f(u2)

5u + 1
du = 2025− I.

Therefore, I =
2025

2
.



9. Find the x-coordinate of all the points on the graph of f(x) =
x

x+ 1
where the tangent line also

passes through the point (1, 2).

Answer: −2±
√
3

Solution: On one hand, the slope of the tangent line to the graph of f at the point (a, a
a+1) that

passes through (1, 2) is equal to

a
a+1 − 2

a− 1
=

a− 2(a+ 1)

(a+ 1)(a− 1)
= − a+ 2

(a+ 1)(a− 1)
.

On the other hand, the same slope is equal to f ′(a) =
1

(a+ 1)2
. Therefore,

− a+ 2

(a+ 1)(a− 1)
=

1

(a+ 1)2
⇔ (a+ 2)(a+ 1) = 1− a ⇔ a2 + 4a+ 1 = 0.

Solving the quadratic equation we get a = −2−
√
3 or a = −2 +

√
3.

10. Suppose T is a triangle such that the center of its circumscribed circle lies within the triangle. Let
α, β and γ be the angles of T . Find the largest real number c such that the inequality

sinα+ sinβ + sin γ ≥ c

is guaranteed for any choice of the triangle T .

Answer: 2.

Without loss of generality, we may assume that α ≥ β ≥ γ. Using the formula for the sum of sines
and the identity α+ β + γ = π, we obtain

sinα+ sin γ = 2 sin
α+ γ

2
cos

α− γ

2
= 2 sin

π − β

2
cos

α− γ

2
.

Let α0 = π/2 and γ0 = π/2− β. Then

sinα0 + sin γ0 = 2 sin
α0 + γ0

2
cos

α0 − γ0
2

= 2 sin
π − β

2
cos

β

2
.

The center of the circumscribed circle lies outside a triangle if and only if the triangle is obtuse.
Hence α ≤ π/2. It follows that β + γ ≥ π/2 ≥ α. Then α− γ ≤ β. Consequently, cos α−γ

2 ≥ cos β
2 ,

which implies that sinα+ sin γ ≥ sinα0 + sin γ0 = 1 + sin γ0. The angles β and γ0 are both acute.
Therefore their sines and cosines belong to the interval (0, 1). It follows that

sin γ0 + sinβ > sin γ0 cosβ + cos γ0 sinβ = sin(γ0 + β) = sin(π/2) = 1.

Finally, sinα+ sinβ + sin γ ≥ 1 + sin γ0 + sinβ > 2.

To prove that c = 2 is the largest number with the required property, it is enough to show that the
sum sinα+sinβ+sin γ can be arbitrarily close to 2. Indeed, let us choose T to be an acute triangle
with two larger angles α and β being close to π/2. Then the third angle γ is close to 0. α and β
can be chosen arbitrarily close to π/2 while γ is arbitrarily close to 0. That way sinα+sinβ+sin γ
can be made arbitrarily close to 2.



11. Determine how many real solutions (x, y) the following system of equations has:{
x2 + y2 = 18,

sin(x− y) = 0.

Answer: 6.

The equation sin z = 0 has solutions z = πn, where n is an arbitrary integer. Therefore x− y = πn,
n ∈ Z. Note that

(x+ y)2 + (x− y)2 = (x2 + 2xy + y2) + (x2 − 2xy + y2) = 2(x2 + y2).

Hence the condition x2 + y2 = 18 implies that (x− y)2 ≤ 36. Since (2π)2 > 62 = 36, it follows that
x− y = 0 or π or −π. In the case x− y = 0, we obtain two solution of the system: x = y = 3 and
x = y = −3.

In the case x−y = π, let us substitute y+π for x into the first equation of the system: (y+π)2+y2 =
18. After simplification, 2y2 +2πy+ (π2 − 18) = 0. Since π2 − 18 < 0, it is clear that the quadratic
equation has two real solutions y1 and y2. This yields two solutions of the system: (y1 + π, y1)
and (y2 + π, y2). As for the case x − y = −π, we notice that whenever (x0, y0) is a solution of the
system, so is (y0, x0). It follows that the only solutions of the system in this case are (y1, π + y1)
and (y2, π + y2). Thus the system has a total of six real solutions.

12. Evaluate lim
n→∞

an, where

an =
sin
(
1 + 1

n

)
√
n2 + 1

+
sin
(
1 + 2

n

)
√
n2 + 2

+ · · ·+
sin
(
1 + n

n

)
√
n2 + n

.

Answer: cos 1− cos 2

Solution: Let {bn} and {cn} be sequences defined by

bn =
1√

n2 + n

[
sin

(
1 +

1

n

)
+ sin

(
1 +

2

n

)
+ · · ·+ sin

(
1 +

n

n

)]
and

cn =
1√

n2 + 1

[
sin

(
1 +

1

n

)
+ sin

(
1 +

2

n

)
+ · · ·+ sin

(
1 +

n

n

)]
.

We have that bn ≤ an ≤ cn, for all positive integers n. If we denote

dn =
1

n

[
sin

(
1 +

1

n

)
+ sin

(
1 +

2

n

)
+ · · ·+ sin

(
1 +

n

n

)]
then we see that

lim
n→∞

dn =

∫ 1

0
sin(1 + x)dx = − cos(1 + x)

∣∣∣∣1
0

= cos 1− cos 2.

Since lim
n→∞

bn = lim
n→∞

cn = lim
n→∞

dn, by the Squeeze Theorem we get that lim
n→∞

an = cos 1− cos 2.



13. Find all solutions x of the equation log3 x+ logx 27 = log3(9x
3) + logx(9/x).

Answer:
1

3
;
√
3.

Let us introduce a new variable y = log3 x. Then 3y = x. Based on the second and fourth logarithm
in the equation, x ̸= 1 so y ̸= 0. Therefore, we have x1/y = 3 so that 1/y = logx 3. We obtain that

logx 27 = logx(3
3) = 3/y,

log3(9x
3) = 2 log3 3 + 3 log3 x = 2 + 3y,

logx(9/x) = logx(3
2) + logx(x

−1) = 2/y − 1.

Now the equation can be rewritten as y+3/y = 3y+2/y+1. After simplification, 2y2 + y− 1 = 0.
This quadratic equation has two solutions, y = −1 and y = 1/2. Since both solutions are different
from 0, it follows that x = 3−1 and x = 31/2 are solutions of the original equation.

14. Find the exact value of

E =
8∑

k=1

sin6
(2k − 1)π

32
.

Answer:
5

2

Solution: Using the formula sin2 α =
1− cos 2α

2
we have

E =
1

8

[
8− 3

8∑
k=1

cos
(2k − 1)π

16
+ 3

8∑
k=1

cos2
(2k − 1)π

16
−

8∑
k=1

cos3
(2k − 1)π

16

]
.

Next we see that

8∑
k=1

cos
(2k − 1)π

16
= cos

π

16
+ cos

3π

16
+ cos

5π

16
+ cos

7π

16

+ cos

(
π − 7π

16

)
+ cos

(
π − 5π

16

)
+ cos

(
π − 3π

16

)
+ cos

(
π − π

16

)
= cos

π

16
+ cos

3π

16
+ cos

5π

16
+ cos

7π

16
− cos

7π

16
− cos

5π

16
− cos

3π

16
− cos

π

16
= 0,

and similarly,

8∑
k=1

cos3
(2k − 1)π

16
= 0. Therefore,

E =
1

8

[
8 + 3

8∑
k=1

cos2
(2k − 1)π

16

]
=

1

8

[
8 +

3

2

8∑
k=1

(
1 + cos

(2k − 1)π

8

)]
=

1

8
(8 +

3

2
· 8) = 5

2
,

since
8∑

k=1

cos
(2k − 1)π

8
= 0.



15. Evaluate the integral

∫ √
3

0
arcsin

(
2x

x2 + 1

)
dx.

Answer:
π
√
3

3

Solution: If we integrate by parts we get∫ 1

0
arcsin

(
2x

x2 + 1

)
dx = x arcsin

(
2x

x2 + 1

) ∣∣∣∣1
0

−
∫ 1

0

2x

x2 + 1
dx,

since
d

dx

(
arcsin

2x

x2 + 1

)
=

2

x2 + 1
, for all x ∈ (−1, 1). This implies that

∫ 1

0
arcsin

(
2x

x2 + 1

)
dx =

π

2
− ln(x2 + 1)

∣∣∣∣1
0

=
π

2
− ln 2.

Similarly, ∫ √
3

1
arcsin

(
2x

x2 + 1

)
dx = x arcsin

(
2x

x2 + 1

) ∣∣∣∣
√
3

1

+

∫ √
3

1

2x

x2 + 1
dx,

since
d

dx

(
arcsin

2x

x2 + 1

)
= −

2

x2 + 1
, for all x ∈ (1,∞), which implies that

∫ √
3

1
arcsin

(
2x

x2 + 1

)
dx =

π
√
3

3
− π

2
+ ln(x2 + 1)

∣∣∣∣
√
3

1

=
π
√
3

3
− π

2
+ 2 ln 2− ln 2 =

π
√
3

3
− π

2
+ ln 2.

Therefore,

∫ √
3

0
arcsin

2x

x2 + 1
dx =

π
√
3

3
.

16. A function f : N → N on the set of positive integers is defined recursively as follows: f(1) = 1,
f(n) = f(n− 1) + 1 for all odd numbers n ≥ 3, and f(n) = f(n/2) for all even n. Find f(2025).

Answer: 8.

The function f(n) counts the number of 1s in the binary representation of the integer n. Recall
that the binary representation of n is a string of symbols dsds−1 . . . d3d2d1, where each di is 0 or 1,
ds ̸= 0, and n = d1 + 2d2 + 22d3 + · · · + 2s−2ds−1 + 2s−1ds. Let g(n) denote the number of 1s in
the binary representation of n. For any integer k ≥ 1, the binary representation of the number 2k
is obtained from the binary representation of k by appending 0 while the binary representation of
2k+1 is obtained by appending 1. It follows that g(2k) = g(k) and g(2k+1) = g(k)+1. Note that
we also have f(2k) = f(k) and f(2k + 1) = f(2k) + 1 = f(k) + 1. Besides, f(1) = g(1) = 1. Since
any integer n ≥ 2 can be written as 2k or 2k + 1 for some k ∈ N, it follows by strong induction on
n that f(n) = g(n) for all n ∈ N.
To obtain the binary representation of the number 2025, observe that 211 = 2048 > 2025 and
211 − 25 = 2016 < 2025 so that 2025 = 211 − 25 + 9. The binary representation of 211 − 25 is
11111100000. The binary representation of 9 is 1001. It follows that the binary representation of
2025 is 11111101001. It contains eight 1s.



17. Consider the trigonometric equation

(sin 2x+
√
3 cos 2x)2 − 5 = cos

(π
6
− 2x

)
.

Find the sum of all solutions of this equation which lie in the interval [0, 4π].

Answer:
100π

12
=

25π

3

Solution: The above equation is equivalent to(
1

2
sin 2x+

√
3

2
cos 2x

)2

− 5

4
=

1

4
cos
(π
6
− 2x

)
⇔

cos2
(π
6
− 2x

)
− 1

4
cos
(π
6
− 2x

)
− 5

4
= 0.

Let y = cos
(
π
6 − 2x

)
. Then y ∈ [−1, 1] and 4y2 − y − 5 = 0 ⇔ (4y − 5)(y + 1) = 0 which implies

that y = −1. So

cos
(π
6
− 2x

)
= −1 ⇔ 2x− π

6
= π + 2nπ, n ∈ Z ⇔ x =

7π

12
+ nπ, n ∈ Z.

The solutions in [0, 4π] are
7π

12
,
19π

12
,
31π

12
and

43π

12
and their sum is

100π

12
=

25π

3
.

18. Evaluate the limit

lim
n→∞

√(
n
2

)
+
√(

n+1
2

)
+ · · ·+

√(
2n
2

)
n2

.

Answer:
3
√
2

4
or

3

2
√
2

Solution 1: Let

Sn =

n∑
k=0

√(
n+ k

2

)
=

n∑
k=0

√
(n+ k)(n+ k − 1)

2
=

1√
2

n∑
k=0

√
(n+ k)(n+ k − 1).

We use the Squeeze theorem with the following bounds:

(n+ k − 1)2 ≤ (n+ k)(n+ k − 1) ≤ (n+ k)2.

Consider Ln and Un defined by

Ln =
1√
2

n∑
k=0

√
(n+ k − 1)2 =

1√
2

n∑
k=0

(n+ k − 1) and Un =
1√
2

n∑
k=0

(n+ k).



We have
√
2Ln =

n∑
k=0

(n+ k − 1) = n(n+ 1) +
(n− 2)(n+ 1)

2
=

(3n− 2)(n+ 1)

2
,

which implies

lim
n→∞

Ln

n2
= lim

n→∞

1√
2

(3n− 2)(n+ 1)

2n2
=

3

2
√
2
.

Similarly, we have

√
2Un =

1√
2

n∑
k=0

(n+ k) = n(n+ 1) +
n(n+ 1)

2
=

3n(n+ 1)

2
,

and

lim
n→∞

Un

n2
= lim

n→∞

1√
2

3n(n+ 1)

2n2
=

3

2
√
2
.

Therefore,

lim
n→∞

Ln

n2
≤ lim

n→∞

Sn

n2
≤ lim

n→∞

Un

n2
.

The given limit becomes

lim
n→∞

√(
n
2

)
+
√(

n+1
2

)
+ · · ·

√(
2n
2

)
n2

= lim
n→∞

Sn

n2
=

3

2
√
2
=

3
√
2

4
.

Solution 2: We apply Stolz-Cesaro Theorem (effectively, a discrete version of L’Hospital’s Rule for

sequences) with general terms an =

n∑
k=0

√(
n+ k

2

)
and bn = n2, defined for all positive integers n.

Since {bn} is strictly increasing and unbounded and

lim
n→∞

an+1 − an
bn+1 − bn

= lim
n→∞

√(
2n+1

2

)
+
√(

2n+2
2

)
−
√(

n
2

)
(n+ 1)2 − n2

= lim
n→∞

√
2n(2n+ 1) +

√
(2n+ 1)(2n+ 2)−

√
n(n− 1)√

2(2n+ 1)
=

3
√
2

4
,

it implies that lim
n→∞

an
bn

=
3
√
2

4
.

19. Find the exact value of E = cot6

(
π

9

)
+ cot6

(
2π

9

)
+ cot6

(
4π

9

)
.

Answer: 433

Solution: Using the formula cot 3α =
cot3 α− 3 cotα

3 cot2 α− 1
we get that

cot2 3α =
cot6 α− 6 cot4 α+ 9 cot2 α

9 cot4 α− 6 cot2 α+ 1
.



For α =
π

9
, α =

2π

9
and α =

4π

9
, we have cot2 3α =

1

3
. We deduce that x1 = cot2

π

9
, x2 = cot2

2π

9

and x3 = cot2
4π

9
are the roots of the equation

x3 − 6x2 + 9x

9x2 − 6x+ 1
=

1

3
⇔ 3x3 − 27x2 + 33x− 1 = 0.

So x1 + x2 + x3 = 9, x1x2 + x2x3 + x3x1 = 11, and x1x2x3 =
1
3 . This implies that x21 + x22 + x23 = 59

and from 3x3i − 27x2i + 33xi − 1 = 0, for i = 1, 2, 3 we obtain that

3(x31+x32+x33)−27(x21+x22+x23)+33(x1+x2+x3)−3 = 0 ⇔ x31+x32+x33 = 9(x21+x22+x23)−11(x1+x2+x3)+1.

Therefore, E = 9 · 59− 11 · 9 + 1 = 433.

20. Consider the sequences {an} and {bn} given by

an =
n∑

k=1

3k + 1

k + 1

(
2k

k

)
and bn = n

√
an + 2. Find lim

n→∞
bn.

Answer: 4

Solution: We have that(
2k + 2

k + 1

)
−
(
2k

k

)
=

(2k + 2)!

[(k + 1)!]2
− (2k)!

(k!)2

=
(2k)!

(k!)2

[
(2k + 1)(2k + 2)

(k + 1)2
− 1

]
=

3k + 1

k + 1

(
2k

k

)
.

Therefore,

an =

n∑
k=1

3k + 1

k + 1

(
2k

k

)
=

n∑
k=1

((
2k + 2

k + 1

)
−
(
2k

k

))
=

(
2n+ 2

n+ 1

)
−
(
2

1

)
=

(
2n+ 2

n+ 1

)
− 2,

which implies that bn = n
√
an + 2 = n

√(
2n+2
n+1

)
.

Next we use the fact that, if a sequence {xn} satisfies xn > 0, for all n and lim
n→∞

xn+1

xn
exists then

lim
n→∞

n
√
xn = lim

n→∞

xn+1

xn
. Since

lim
n→∞

(2(n+1)+2
(n+1)+1

)(
2n+2
n+1

) = lim
n→∞

(
2n+4
n+2

)(
2n+2
n+1

) = lim
n→∞

(2n+ 3)(2n+ 4)

(n+ 2)2
= 4,

we conclude that lim
n→∞

bn = 4.



21. Find all the triples of positive real numbers (x, y, z) that satisfy the equations

4
√
x2 + 1

x
=

5
√

y2 + 1

y
=

6
√
z2 + 1

z
,

x+ y + z = xyz.

Answer:

(√
7

3
,
5
√
7

9
, 3
√
7

)
or x =

√
7

3
, y =

5
√
7

9
, z = 3

√
7

Solution: Since x, y and z are positive real numbers, there exist A, B, and C in

(
0,

π

2

)
such that

x = tanA, y = tanB and z = tanC. The last equation becomes

tanA+ tanB + tanC = tanA tanB tanC ⇔
sinA cosB cosC + sinB cosA cosC + sinC cosA cosB − sinA sinB sinC = 0 ⇔
sin(A+B) cosC + cos(A+B) sinC = 0 ⇔ sin(A+B + C) = 0.

Since A,B,C ∈

(
0,

π

2

)
, we obtain that A+B+C = π, which says that A, B, and C are the angles

of a triangle. Using the identity sinα =
tanα

√
1 + tan2 α

, for all α ∈

(
0,

π

2

)
, the first equations of our

system become
4

sinA
=

5

sinB
=

6

sinC
.

From the Law of Sines, we can assume that a = 4, b = 5, and c = 6. We apply the Law of Cosines
and we get

cosA =
b2 + c2 − a2

2bc
=

3

4
⇒ sinA =

√
7

4
⇒ x = tanA =

√
7

3
,

cosB =
9

16
⇒ sinB =

5
√
7

16
⇒ y = tanB =

5
√
7

9
,

cosC =
1

8
⇒ sinC =

3
√
7

8
⇒ z = tanC = 3

√
7.


